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1. Alice’s Dilemma.

Bob has challenged Alice to a coin-flipping contest. If she accepts, they’ll each flip a

fair coin repeatedly until it turns up tails, earning a score equal to the number of times

the coin turns up heads. (Thus if Alice flips HHHT her score is 3.) The high scorer wins,

and collects a prize of $4n (or, if you prefer, the utility equivalent of $4n) from the loser,

where n is the loser’s score.

Thus if Alice flips a heads and Bob flips b heads, she’ll receive a payment of

P (a, b) =

{−4a if a < b
0 if a = b
4b if a > b

(1)

Alice has commissioned two economists to advise her on whether to accept the chal-

lenge.

Economist One observes that conditional on Bob’s score b taking on the particular

value b0, Alice’s expected return is

Ea(P (a, b0)) =
∞∑

a=0

1
2a+1

P (a, b0) = 1/2 (2)

(A priori, we might have expected this expression to depend on b0, but it turns out not

to.) Thus, no matter what score Bob earns, Alice’s expected return is positive. Therefore

she should play.

Economist Two observes that conditional on Alice’s score a taking on a particular

value a0, her expected return is

Eb(P (a0, b)) =
∞∑

b=0

1
2b+1

P (a0, b) = −1/2 (3)

Many thanks to Paulo Barelli, Hari Govindan and Asen Kochov for enlightening

conversations.
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Thus, no matter what score Alice earns, her expected return is negative. Therefore she

should not play.

Who’s right?

2. The Economists Make Their Cases.

Economist One elaborates thus:

Look. Suppose you had a perfectly clairvoyant friend who could predict

Bob’s score with certainty (but isn’t allowed to reveal it to you). That

friend, knowing Bob’s score to be, say, 3 (or maybe 0 or 7 or 12) would

use equation (2) to calculate your expected gain and would surely urge

you to play. How can it make sense to ignore the advice of a benevolent

friend who has better information than you?

Or if you prefer, look at it this way: Suppose Bob flips first. As soon as

you learn his score, you know you’re going to want to play this game,

and you’re going to be sorry if you failed to accept the challenge. Surely

a policy you know you’re going to regret is a bad policy. That proves

that if Bob flips first, you should surely accept the challenge. But at the

same time, it clearly doesn’t matter who flips first, so you should accept

the challenge in any event.

To put this yet another way, you can view Bob’s score as a state of

the world over which you have no control. From that point of view,

playing is a dominant strategy — in every state of the world, it beats

not-playing. Any good game theorist will tell you that when you’ve got

a dominant strategy, you should surely use it.

This makes good sense to Alice. It’s true she has no clairvoyant friends, but it seems

equally true that clairvoyant friends give good advice, and that if she had a clairvoyant

friend, this is the advice she’d get.

Unfortunately, Economist Two counters thus:

Ah, yes — the imaginary clairvoyant friend trick. Let’s run with that.

Suppoe your clairvoyant friend can predict your score with certainty.

That friend, knowing your score to be, say, 3 (or maybe 0 or 7 or 12)
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would use equation (3) to calculate your expected gain and would surely

urge you not to play. How, indeed, can it make sense to ignore the advice

of a benevolent friend who has better information than you?

Or if you prefer, look at it this way: Suppose you flip first (or any time

at all before Bob’s score is revealed). Then as soon as you learn you’re

own score, you’re going to wish you’d never agreed to play this game —

and you know that in advance. Surely a policy you’re sure to regret is

a bad policy. That proves that if you flip first, you should surely reject

the challenge. But as my esteemed colleague Economist One has already

observed, it clearly doesn’t matter who flips first. So you should reject

the challenge in any event.

And as for that “dominant strategy” stuff, why don’t we try viewing your

score as the state of the world? In that case, not-playing beats playing

in every state of the world, so not-playing is the dominant strategy. I

agree with Economist One that if you’ve got a dominant strategy, you

should use it. That’s why I think you shouldn’t play.

In case this doesn’t leave Alice sufficiently confused, Economist Three has just arrived

and makes this observation:

For goodness’s sake, this is a zero-sum game, so if the game is good

for you then it’s bad for Bob. But at the same time, it’s a perfectly

symmetric game, so if the game is bad for Bob, then it’s bad for you.

In summary, if the game is good for you then it’s bad for you, and by

the same argument, if the game is bad for you then it’s good for you.

The only possible conclusion is that it doesn’t matter whether you play

or not. Pardon the expresssion, but you might as well flip a coin.

Alice believes that each economist has done an excellent job of explaining why his

own argument is right. Unfortunately, none of them has even attempted to explain why

the other arguments are wrong.

3. The Source of the Problem.

While Economist One has calculated Alice’s expected return conditional on Bob’s
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score, and Economist Two has calculated Alice’s expected return conditional on Alice’s

score, it occurs to Alice that she might gain some insight by calculating her return uncon-

ditionally .

That is, Alice wants to calculate the value of

∑
a,b

1
2a+b+2

P (a, b) (4)

where P is the payoff function defined in (1) and (a, b) runs over all possible pairs of scores

(i.e. all possible pairs of non-negative integers.) Unfortunately (4) does not converge.

Worse yet, the sum of the positive terms diverges to +∞ while the sum of the negative

terms diverges to −∞, so it appears that (4) offers no guidance at all.

Indeed, if the sum (4) were absolutely convergent then the paradox could never have

arisen in the first place, because then Fubini’s theorem would allow us to interchange the

order of summation and write:

∞∑
a=0

1
2a+1

∞∑
b=0

1
2b+1

P (a, b) =
∞∑

b=0

1
2b+1

∞∑
a=0

1
2a+1

P (a, b)

which, in the presence of (2) and (3), simplifies to

−1
2

=
1
2

Thus if (4) were absolutely convergent, then (2) and (3) could not simultaneously

hold.

This might seem to suggest a resolution, namely: Economists should not allow them-

selves to contemplate payoff functions that violate the hypotheses of Fubini’s theorem.

But where does this leave Alice, who knows nothing of Fubini’s theorem but still has a

decision to make?

4. Repeated Plays.

What can Alice expect if she plays this game repeatedly? We’ll consider two scenarios.

Scenario One: Suppose first that Bob flips once, generating a score b that Alice

repeatedly tries to beat by flipping coins to generate a new score a every day.
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In this case, (2) tells us that Alice is playing a game with positive expected value, so

the Law of Large Numbers is on her side — if she plays long enough she can be confident

of coming out ahead. She might need to be pretty patient though. Although her expected

return is 1/2, the variance around that expected return is a whopping

σ2 =
4
7

8b − 9
28

where b is Bob’s score. Thus if Bob earns a score of, say b = 4, Alice finds herself playing

a game with expected value 1/2, a standard deviation over 48, and negative outcomes 31

times as likely as positives. It turns out that in order to have even a 50% chance of coming

out ahead, she’ll have to play at least 69 times — and this number increases extremely

rapidly with b.

Scenario Two: Suppose instead that Bob and Alice each flip new scores independently

each day. Because this is a symmetric zero-sum game, the distribution of Alice’s returns

must be symmetric around zero. Alice might therefore dare to hope for some version of

the Law of Large Numbers, protecting her from large losses if she plays long enough. Alas,

this hope is dashed by the main lemma in Section 3 of [F], from which we can extract the

following:

Let An be Alice’s average return after n plays of the game. Then for small ε, the

expression

Prob(|An| < ε)

does not approach 1 as n gets large.

In fact, with a bit more work, one can invoke the results of [L] and prove that things

are even worse for Alice:

For large M and large N , the expression

Prob(|An| > M)

is approximately equal to K/M where K ≈ 2/3 is a constant that does not depend on n or

M .

In particular, there is no M for which Prob(|An| > M) tends to zero as n gets large.

Thus Alice cannot use repeated plays to reduce the probability of, say, a $1000 average net
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loss. Indeed, playing twice as many games renders a $1000 average net loss just as likely

but twice as painful.1

5. Resolution, Part I.

To resolve Alice’s dilemma, we must first be explicit about what’s at stake. Do the

payoffs in (1) denote dollars, or do they denote units of utility?

In this section, we’ll assume the payoffs are denominated in dollars. Thus the argu-

ments of Economist One and Economist Two are valid only if Alice is an expected value

(as opposed to expected utility) maximizer.

But why should Alice be an expected value maximizer in the first place? There can

be two good reasons to maximize expected value. The first assumes repeated play and

appeals to the Law of Large Numbers. But in this case, even if we assume repeated play

— with Bob and Alice flipping independently each time — we’ve seen that the Law of

Large Numbers not only fails, but fails in the strong sense that repeated play actually

increases the probability of a given net total loss. So we can dispose of that reason.

The second good reason to maximize expected value is that one is really maximizing

expected utility, and the amounts at stake are sufficiently small that changes in expected

utility are well approximated by changes in expected value. This reason applies only if

the amounts at stake are small, which they are arguably not, and only if Alice maximizes

expected utility, which I will argue in the next section is not a viable assumption.

Thus we’ve eliminated both of the good reasons for Alice to maximize expected value

and therefore rendered both economists’ arguments invalid when the payoffs are monetary.

6. Resolution, Part II.

Suppose now that the payoffs in (1) denote units of utility. Then the economists’

arguments rest on the assumption that Alice is an expected utility maximizer. But why

should we believe such a thing?

The usual answer is that we envision an agent choosing among some set of lotteries,

1 Although the result above is stated “for large n”, computer simulations strongly

suggest that the distribution of An looks nearly identical for all values of n from 5 to

5, 000, 000. See the appendix for some data.
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where a lottery is a probability distribution over some set C. We assume the agent has some

preference ordering, we make some assumptions about the properties of that preference

ordering, and then we prove that the agent is an expected utility maximizer.

There are, of course, innumerable versions of such representation theorems, each with

its own technical assumptions about the set C, the set C of allowable probability distri-

butions on which the preference ordering is defined, and the technical properties of the

preference ordering. For example, the original vonNeumann-Morgenstern expected utility

theorem assumes that each distribution in C has finite support.

Unless one of those theorems applies, we have no reason to believe Alice is an expected

utility maximizer — and therefore no reason to be swayed by the arguments of Economists

One and Two.

So in order to take these arguments seriously, we need a theorem, and before we can

have a theorem, we need some hypotheses. For the Economists’ arguments to work, these

hypotheses would have to include at least the following assumptions:

• The set C includes the zero payoff (which Alice can earn by declining to play).

• The set C includes all possible payoffs P (a, b).

• For each fixed b0, the probability distribution that assigns probability 1/2a+1 to

the outcome (a, b0) is in C.

• For each fixed a0, the probability distribution that assigns 1/2b+1 to the outcome

(a0, b) is in C.

But there can be no representation theorem with these hypotheses, because if there

were, it would imply the contradictory conclusions of Economists One and Two.

If we want a representation theorem, then, we have to prohibit Alice from having

preferences over some of the lotteries we’ve considered. This seems a quite unsatisfactory

solution, because all of those lotteries are easily implemented as long as a fair coin is

available — and it’s easy to imagine asking Alice to choose between any two of them.

That leaves the option of acknowledging that we have no representation theorem,

hence no reason to believe that Alice is an expected utility maximizer, hence no reason to

lend any credence to the arguments of either Economist.

What, then, should Alice do? Should she or should she not accept Bob’s challenge?
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The answer, of course, is that she should choose whatever she prefers! Presumably she can

figure that out for herself. If she can’t, no expected utility calculation can help — and we

shouldn’t expect it to.

Appendix

Let An be Alice’s average payoff if she accepts Bob’s challenge n times. The results of

Section 4 say that for large n and large M , the probability that |An| > M is approximately

constant. The question remains “How large is large?”. Computer simulations suggest that

n = 5 is plenty large, in the sense that the distribution of A5 appears indistinguishable

from the distribution of A5,000,000.

Figure 1 shows 100 data points for Alice’s average (not total!) return over 5 simulated

plays of the game (that is, the computer played five times, computed the average, plotted

a point, and repeated this 100 times), then for 50, 500, 5000, and so on up to 5,000,000.

Except for a few sporadic outliers, it’s hard to discern much difference among these dis-

tributions. Figure 2 presents the same data on a different scale that makes it easier to

discern the details at the cost of excluding the outliers.
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