Start with $\$ 1$.
Invest $\$ x$ in a risky asset today; the value of the asset multiplies by γ overnight. Tomorrow invest a total of $\$ y$ in the risky asset. y is allowed to depend on γ. The asset multiplies by δ the second night, with γ and δ i.i.d.

At the interest rate r, your assets at the end are

$$
((1-x) \cdot(1+r)+x \cdot \gamma-y) \cdot(1+r)+y \cdot \delta
$$

Consider the case where $r=0$ and set $\alpha=\gamma-1, \beta=\delta-1$. Then your increase in assets from period zero to period two is given by the expression

$$
\begin{equation*}
x \cdot \alpha+y(\alpha) \cdot \beta \tag{1}
\end{equation*}
$$

Write μ for the mean of α (and β) and σ for the variance of α (and β).
A strategy consists of a number x (the initial investment) and a function $y(\alpha)$.
The goal, for a fixed expected value of (1), is to minimize the variance of (1). Fix the expected value at c. Then we always have

$$
\begin{equation*}
x=\frac{c}{\mu}-\bar{y} \tag{2}
\end{equation*}
$$

Now the problem is to choose a function $y(\alpha)$, such that when x is determined by (2), the variance of (1) is minimized.

Note that

$$
\operatorname{Var}(x \cdot \alpha+y \cdot \beta)=\operatorname{Var}(x \cdot \alpha)+\operatorname{Var}(y \cdot \beta)+2 \cdot \operatorname{Cov}(x \cdot \alpha, y \cdot \beta)
$$

and that

$$
\operatorname{Cov}(x \cdot \alpha, y \cdot \beta)=x \cdot \mu \cdot \operatorname{Cov}(\alpha, y)
$$

by the independence assumptions, so that

$$
\begin{equation*}
\operatorname{Var}(x \cdot \alpha+y \cdot \beta)=x^{2} \cdot \sigma+\bar{y}^{2} \cdot \sigma+\mu^{2} \cdot \operatorname{Var}(y)+\sigma \cdot \operatorname{Var}(y)+2 \cdot x \cdot \mu \cdot \operatorname{Cov}(\alpha, y) \tag{3}
\end{equation*}
$$

where x continues to be given by expression (2).
Write $E=\bar{y}, V=\operatorname{Var}(y)$, and $C=\operatorname{Cov}(\alpha, y)$. Then using (2), the right-hand side of (3) becomes

$$
\begin{equation*}
\left(\frac{c}{\mu}\right)^{2} \sigma-\frac{2 c \sigma}{\mu} E+2 \sigma E^{2}+\left(\mu^{2}+\sigma\right) V+2 c C-2 \mu E C . \tag{4}
\end{equation*}
$$

Experiment 1: Try adding a constant t to y. This replaces E by $E+t$ while leaving V and C fixed. Insert this information into (4), differentiate with respect to t, and set $t=0$. The resulting expression must equal zero if y is optimal. This gives

$$
\begin{equation*}
E=\frac{c \sigma+\mu^{2} C}{2 \sigma \mu} \tag{5}
\end{equation*}
$$

Experiment 2: Try multiplying y by a constant t. This replaces E by $t E, V$ by $t^{2} V$ and C by $t C$. Insert into (4), differentiate with respect to t, set $t=1$ and note that the expression must equal zero.

But the expression just described is

$$
-\frac{2 c \sigma}{\mu} E+4 \sigma E^{2}+2\left(\mu^{2}+\sigma\right) V+2 c C-4 \mu E C
$$

which, after taking account of (5), reduces to

$$
2\left(\mu^{2}+\sigma\right) V
$$

Assuming $\sigma \neq 0$, we conclude that $V=0$, so y is a constant, so $C=0$, so (5) gives

$$
y=\frac{c}{2 \mu}
$$

and (1) gives

$$
y=x
$$

So to minimize risk, the total amount invested in period 2 should equal the total amount invested in period 1 , independent of the realized return in period 1.

Remaining questions: What if r not zero? What if you are simultaneously trying to smooth consumption? What if attitudes toward risk depend on wealth and hence on α ? What happens in equilibrium? If everyone tries to follow this strategy, how does the interest rate behave in RE equilibrium?

