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Patching and Birationality

by

Steven E. Landsburg

1. Introduction.

Our object of study will be a commutative square of commutative rings

iR
R −→ R′

φ ↓ ↓ φ′

S −→ S′

iS

(1)

in which R is always assumed to be noetherian.

1.1. Milnor Patching. A collection of patching data for (1) is a triple

(PR′ , PS , α : PR′ ⊗R′ S′
≈−→S′ ⊗S PS),

where PR′ is a finitely generated projective R′-module, PS is a finitely generated projective

S-module, and α is an isomorphism of S′-modules.

The category of finitely generated projective R-modules maps functorially to the cat-

egory of patching data via

F : P 7→ (P ⊗R R′, S ⊗R PS , α)

with α the obvious identification (p⊗ 1)⊗ 1 7→ 1⊗ (1⊗ p).

We say that (1) is a Milnor Patching Diagram if F is an equivalence of categories,

with inverse equivalence given by

G : (PR′ , PS , α) 7→ {(pR′ , pS) | pR′ ∈ PR′ , pS ∈ PS , and α(pR′ ⊗ 1) = 1⊗ pS}.

The techniques of [M, Chapter 2] show that (1) is a Milnor Patching Diagram if and

only if the following two statements hold:
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a) (1) is a pullback in the category of commutative rings

and b) For any patching data (PR′ , PS , α), the R-module G(PR′ , PS , α) is projective, and

F ◦G ≈ 1.

The techniques of [M, Chapter 2] show in addition that property (b) follows from

b′) For every n > 0 and every α ∈ GLn(S′), there exists k > 0 and β ∈ GLk(S′) and

a factorization (
α 0
0 β

)
= A ·B

where A lifts to GLn+k(R′) and B lifts to GLn+k(S).

In [PAI], we called (1) a strong Milnor Patching Diagram if it is a Milnor Patching

Diagram and if (b′) always holds with k = n and β = α−1. In this paper, whenever we

demonstrate that a diagram has the Milnor Patching property, we will do so by demon-

strating that it has the strong Milnor Patching property; that is, we will show that it

satisfies (a) and this strong form of (b′).

1.2. Goals of This Paper. In [MPP], we gave a partial classification theorem for

Milnor Patching Diagrams. There are two errors in that paper that should be noted. First,

the reduction to the case where R is a domain is incorrect. Therefore, [MPP, Theorem 2.6]

requires the additional hypothesis that R is a domain. Second, [MPP, Theorem 3.2] also

requires an additional hypothesis, namely: R contains no maximal ideal M such that RM

is a regular local ring of dimension 2. Proposition 2.1 of the present paper is a corrected

version of [MPP, Theorem 3.2], making use of that additional hypothesis.

At the same time, it is now possible to eliminate some of the hypotheses that are

explicitly stated in [MPP]. For example, [MPP] imposes conditions on the height one

ideals of R. For another example, [MPP] assumes that S′ = R′ ⊗R S.

In the present paper, we will develop necessary and sufficient conditions for Milnor

Patching that avoid these restrictive hypotheses. The resulting theorems generalize es-

sentially all of the results in [MPP] that are correct as stated. Moreover, the conditions

developed in the present paper are simpler and more intuitive than those of [MPP]. The

same can be said of the techniques of proof.
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Some of the results in this paper follow from those of [MPP]. However, this paper is

self-contained and renders [MPP] obsolete.
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For reasons that are explained in the paragraphs below, we will focus our attention on

the case where R is a domain and R′ is contained in the quotient field of R. In this case we

call R′ a birational extension of R. Any such R′ can be written in the form R′ = R[{fi/gi}]

where i runs over a set of arbitrary cardinality. The multiplicative set D generated by the

gi will be called a set of denominators for R′. (Note that a single extension R′ can have

more than one set of denominators.)

Let φ : R → S be a map. If the gi can be chosen to be non-zero-divisors on S, then

we call the set D a set of allowable denominators for φ and we define S[R′] to be that

subring of the total quotient ring of S that is generated by S and all φ(f)/φ(g). In this

case we say that S[R′] is defined .

Our first goal is to demonstrate that it is interesting to consider the class of diagrams

(1) in which R′ is a birational extension of R. Our second goal is to determine the conditions

under which such a diagram satisfies Milnor Patching.

The first goal is addressed by Theorem 1.3 below, while the second is addressed by

Theorem 3.3, which is the main theorem of the paper.

Theorem 1.3. Suppose that (1) is a Milnor Patching Diagram and that R contains

no maximal ideal M such that RM is a regular local ring of dimension 2. Then:

(i) There is a split surjection R′ ⊗R S →−→S′.

(ii) Suppose in addition that R, R′ and S are domains, and that the map from (i)

above is an isomorphism. Then at least one of R′ and S is a birational extension

of R. (In applications, we will always assume without loss of generality that R′

is a birational extension.)

(iii) Suppose conversely that R is a domain, that R′ is a birational extension of R,

and that S[R′] is defined. Let D be a set of allowable denominators. Then there

are surjective maps

R′ ⊗R S →−→S′ →−→S[R′]

and the kernels of these maps are all D-torsion. In particular, if there is no

D-torsion in R′ ⊗R S, then both of the maps are isomorphisms.
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The proof will occupy Section 2.

Theorem 1.1 suggests that for many Milnor Patching Diagrams, R′ is a birational

extension of R and S′ = S[R′]. In Section 3, we will examine this class of diagrams

and state our main theorem (Theorem 3.3) which gives necessary and sufficient conditions

for such diagrams to satisfy Milnor Patching. Sections 4 through 6 contain the proof of

Theorem 3.3. Section 7 contains some counterexamples and open questions.

I thank Ray Heitmann for listening to results in progress.

2. Some Consequences of Milnor Patching.

In this section we will develop some consequences of Milnor Patching for an arbitrary

diagram (1). The culmination will be the proof of Theorem 1.3.

Proposition 2.1. Suppose that (1) is a Milnor Patching Diagram. Suppose also that

R contains no maximal ideal M such that RM is a regular local ring of dimension 2. Let

J ⊂ R be any ideal such that JR′ = R′ and JS = S. Then J = R.

Proof. Assuming the contrary, we may replace J with a maximal ideal containing J ,

so we take J to be maximal.

Let J = (j1, . . . , jn). Consider the following diagram, in which the left column is

defined by taking kernels:

0 0 0
↓ ↓ ↓

0 → K → Rn (j1,...,jn)−→ R → R/J → 0
↓ ↓ ↓

0 → KR′ ×KS → (R′)n × Sn −→ R′ × S → 0
↓ ↓ ↓

0 → KS′ → (S′)n −→ S′ → 0

Notice that exactness of the second and third columns is a consequence of the pullback

property, which is in turn a consequence of Milnor Patching. Exactness of the first column

follows.

Now KR′ , KS and KS′ are projective over R′, S, and S′, so that K is projective over

R by Milnor Patching. This implies that the projective dimension of R/J as an R-module
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is at most 2. Projective dimension 2 is ruled out by hypothesis; therefore the projective

dimension is at most 1. It follows that J is projective as an R-module, so that RJ is a

DV R.

Let j ∈ J map to a generator for the maximal ideal in RJ . Then j maps to units in

R′ ⊗R RJ and S ⊗R RJ , and consequently (by the pullback property for (1)) to a unit in

RJ . In other words, J is the unit ideal in R.

q.e.d.

Remark. The hypothesis “R contains no maximal ideal M such that RM is a regular

local ring of dimension 2” can be replaced by the hypothesis “the addition map R′×S → S′

is onto” since in that case we have a diagram with exact rows and columns

0 0 0
↓ ↓ ↓

0 → R
(j1,...,jn)−→ Rn → M → 0

↓ ↓ ↓
0 → R′ × S −→ (R′)n × Sn → M1 ×M2 → 0

↓ ↓ ↓
0 → S′ −→ (S′)n → M12 → 0

↓ ↓ ↓
0 0 0

in which the final column is defined by taking cokernels. M is projective by Milnor patch-

ing, so the top row splits, which proves that (j1, . . . , jn) generates the unit ideal.

Standing Hypothesis. In order to apply Proposition 2.1, I will assume throughout

Section 2 that R contains no maximal ideal M such that RM is a regular local ring of

dimension 2. In order to avoid repetitiveness, I will not explicitly restate the assumption

each time it is used. However, it is worth remarking that I know of no counterexample to

the assertion that this hypothesis can be eliminated wherever it is used.

Corollary 2.2 Suppose that (1) is a Milnor Patching Diagram. Let M ⊂ R be any

maximal ideal and consider the localized diagram

RM −→ R′ ⊗R RM

↓ ↓
S ⊗R RM −→ S′ ⊗R RM

. (2)
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Let J ⊂ RM be any ideal such that J · (R′⊗R RM ) = R′⊗R RM and J · (S⊗R RM ) =

S ⊗R RM . Then J = RM .

Proof. Write J = (j1/1, . . . , jn/1) for some ji ∈ R. Let J ′ ⊂ R be the ideal

(j1, . . . , jn). The hypothesis guarantees that there exist m1,m2 ∈ M such that (J ′,mi)Ri =

Ri. It follows from this and Proposition 2.1 that (J ′,m1,m2) = R. Consequently some

element of J ′ is not contained in M , which is what is needed.

q.e.d.

Proposition 2.3. Suppose that (1) is a Milnor Patching Diagram. Then the addition

map

R′ × S → S′

is onto.

Proof. Choose s′ ∈ S′. Choose free modules of rank 2 over R′ and S, choose bases

for these free modules, and consider the projective R-module P that results when these

modules are patched along the S′-isomorphism represented by the matrix

α =
(

1 s′

0 1

)
∈ GL2(S′).

Let M be any maximal ideal in R. Write αM for the image of the matrix α in

GL2(S′ ⊗R RM ). Since PM is a free RM module, it follows that αM splits as the product

of matrices that lift to elements of GL2(R′ ⊗R RM ) and GL2(S ⊗R RM ). Write(
A B
C D

)
·
(

1 s′/1
0 1

)
=
(

E F
G H

)
(3)

for some(
A B
C D

)
∈ φ′(GL2(R′ ⊗R RM )) and

(
E F
G H

)
∈ iS(GL2(S ⊗R RM )).

Note that the pullback property for (1) implies the pullback property for the localized

diagram (2). From this and equation (3), we see that A ∈ R′⊗R RM and E ∈ S⊗R RM lift

simultaneously to A0 ∈ RM ; similarly C and G lift simultaneously to C0 ∈ RM . Moreover,
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the image of the ideal (A0, C0) generates the unit ideal in both R′ ⊗R RM and S ⊗R RM ;

consequently (by Corollary 2.2), A0 and C0 generate the unit ideal in RM . Write

r̃A0 + r̃′C0 = 1 (4)

for some r̃, r̃′ ∈ RM .

From equation (3) we have

φ′(A) · (s′/1) + B = E ∈ iS(S ⊗R RM )

φ′(C) · (s′/1) + D = F ∈ iS(S ⊗R RM )

Using equation (4), this yields

s′/1 = (r̃E + r̃′F )− (r̃B + r̃′D) ∈ iS(S ⊗R RM ) + φ′(R′ ⊗R RM ).

But the maximal ideal at which we localized was arbitrary, so

s′ ∈ iS(S) + φ′(R′)

as needed.

q.e.d.

Proposition 2.4. Suppose that (1) is a Milnor Patching Diagram. Let P be any

prime ideal of R, k = k(P ) the residue field of R at P , kT = k ⊗R T for T = R′, S, or S′,

and dT the dimension of kT as a vector space over k. Then either

(i) dR′ + dS = dS′

or (ii) dR′ + dS = dS′ + 1.

Moreover, if P is either the zero ideal or an intersection of maximal ideals, then (ii)

holds.

Proof. From 2.3 and the pullback property, we have an exact sequence

0 → R → R′ ⊕ S → S′ → 0 (5)

and consequently an exact sequence

k → kR′ ⊕ kS → kS′ → 0. (6)
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It follows immediately that if k → kR′⊕kS is not injective then (i) holds, and if k → kR′⊕kS

is injective then (ii) holds.

In case P=0, k is flat over R. Since (6) results from tensoring (5) over R with k, it

follows that k → kR′ ⊕ kS is injective and (ii) holds.

In case P is an intersection of maximal ideals, we prove (ii) by supposing the contrary;

i.e. suppose that k → kR′ ⊕ kS is not injective (and consequently is the zero map). This

means that there exist t1, t2 /∈ P such that iR(t1) ∈ PR′ and φ(t2) ∈ PS. Put t = t1t2.

Then for any x ∈ R, (P, 1 − xt) generates the unit ideal in both R′ and S. By 2.1, it

follows that (P, 1 − xt) = R for any x, i.e. t is in every maximal ideal containing P and

hence in P itself, a contradiction.

q.e.d.

Corollary 2.5. Suppose that (1) is a Milnor Patching Diagram. Suppose also that

S′ = R′ ⊗R S and that the maps from R′ and S to S′ are the obvious ones. Let P be any

prime in R. Then in the notation of 2.4, either

(i) kR′ = kS = 0

or (ii) at least one of the maps k → kT (T = R′, S) is an isomorphism.

Moreover, if P is either the zero ideal or an intersection of maximal ideals, then (ii)

holds.

Proof. In the notation of 2.4, the hypothesis implies that dS′ = dR′dS . Now state-

ment 2.4(i) implies dR′ = dS = 0, which is 2.5(i), and statement 2.4(ii) implies dR′ = 1 or

dS = 1, which is 2.5(ii).

q.e.d.

Corollary 2.6. Suppose that (1) is a Milnor Patching Diagram. Suppose also that

S′ = R′⊗R S and that the maps from R′ and S to S′ are the obvious ones. Finally, assume

that R, R′ and S are integral domains. Then at least one of R′ and S is contained in the

quotient field of R.

Proof. Apply 2.5 to the prime P = 0.

q.e.d.
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Proposition 2.7. Suppose that (1) is a Milnor Patching Diagram. Suppose also that

R is a domain with quotient field K and that the map K → K ⊗R R′ is an isomorphism.

Then the map S → S′ is injective.

Proof. Applying 2.4 to the prime P = 0 and noting that dR′ = 1, we have dS = dS′ .

In other words the map K ⊗R S → K ⊗R S′ is an isomorphism.

Thus if s maps to 0 ∈ S′, then there exists a non-zero a ∈ R with as = 0 ∈ S. Note

also that the pullback property implies the existence of r ∈ R such that φ(r) = s ∈ S and

iS(R) = 0 ∈ R′. It follows that ar maps to zero in both S and R′ and so ar = 0, whence

r = 0 and s = 0.

q.e.d.

Corollary 2.8. Suppose that (1) is a Milnor Patching Diagram. Suppose also that

R is a domain with quotient field K and that R′ is a birational extension of R with set of

denominators D. Then the kernel of the map R′ ⊗R S → S consists entirely of D-torsion.

Proof. Let ξ be in the kernel. Consider the sequence of maps

S → R′ ⊗R S → S′.

Note that for some d ∈ D, d · ξ lifts to S. By 2.7, d · ξ = 0.

q.e.d.

2.9. Proof of 1.3. Statement (i) is an immediate consequence of Proposition 2.3.

Statement (ii) is Corollary 2.6. Statement (iii) follows from Corollary 2.8, once it is noted

that under the hypotheses of the statement, the kernel of the map R′ ⊗R S → S[R′] is

precisely equal to the set of all D-torsion in R′ ⊗R S.

q.e.d.

Remark. The hypothesis that R is noetherian is used only to ensure the finite

generation of J in the proof of Proposition 2.1. The noetherian hypothesis can be dropped

at the cost of complicating the hypothesis that R contains no maximal ideal M such that

RM is a regular local ring of dimension 2. The new hypothesis would replace the phrase

“maximal ideal M” with “ideal M that is maximal among finitely generated ideals”. 2.1
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would then require that J be finitely generated, which suffices for the application in the

proof of 2.3.

3. Birational Extensions

Corollary 2.6 suggests that it is interesting to study the class of diagrams (1) in which

R is a domain and R′ is a birational extension of R. The corollary tells us that many

Milnor Patching Diagrams are necessarily of this form. For expositional reasons, we will

restrict attention to a slightly smaller class of diagrams, which we now describe.

Assumptions and Notation 3.1. Let R be an integral domain, I ⊂ R an ideal, g

a non-zero element of R, and R′ = R[I/g] the subring of the quotient field of R that is

generated by R and all f/g with f ∈ I. (Note that any birational extension that is finitely

generated as an algebra is of this form.)

Let R
φ→S be a ring homomorphism such that φ(g) is not a zero divisor on S. Let

S[I/g] = S[R′] be the subring of the total quotient ring of S that is generated by S and

all φ(f)/φ(g) with f ∈ I.

Let φ′ : R[I/g] → S[I/g] be the obvious induced map.

We will consider the diagram

R −→ R[I/g]
φ ↓ ↓ φ′

S −→ S[I/g]
(7)

and will determine the conditions under which it satisfies Milnor Patching.

Further Notation 3.2. Consider the sequence of R-modules

(I, g)/(g) → (I, g)2/(g2) → (I, g)3/(g3) → · · ·

where each arrow is induced by multiplication by g. Let A0 be the direct limit

A0 = lim
→
k

(I, g)k/(gk).

More generally, fix a non-negative integer n, consider the sequence

(I, g)n+1/(g4n+1) → (I, g)n+2/(g4n+2) → (I, g)n+3/(g4n+3) → · · ·
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where each arrow is multiplication by g, and let An be the direct limit

An = lim
→
k

(I, g)n+k/(g4n+k).

Similarly, we consider the sequence

(I, g)S/gS → (I, g)2S/g2S → (I, g)3S/g3S → · · ·

where again each arrow is induced by multiplication by g. Let B0 be the direct limit

B0 = lim
→
k

(I, g)kS/gkS.

More generally, fix a non-negative integer n, consider the sequence

(I, g)n+1S/g4n+1S → (I, g)n+2S/g4n+2S → (I, g)n+3S/g4n+3S → · · ·

where each arrow is multiplication by g, and let Bn be the direct limit

Bn = lim
→
k

(I, g)n+kS/g4n+kS.

There are maps An → Bn induced by the map R → S.

Here is the main theorem:

Theorem 3.3. Consider the following three conditions:

(a) The maps An → Bn are isomorphisms for all n.

(b) The diagram (7) is a Milnor Patching Diagram.

(c) The map A0 → B0 is an isomorphism.

The following statements hold:

(i) (a) implies (b).

(ii) Suppose that R contains no maximal ideal M such that RM is a regular local

ring of dimension 2. Then (b) implies (c).

(iii) Suppose that I = (f) is a principal ideal and g is a non-zero-divisor on S/fS.

Then (c) implies (a). Thus, if we add the hypothesis of statement (ii), then the

three conditions (a), (b) and (c) are all equivalent.
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The proof will span three sections. In section 4 we prove part (ii). In section 5 we

prove part (i). In section 6, we prove part (iii). The assumption that R is noetherian will

be used only in the proof of (ii).

4. Necessary Conditions for Milnor Patching.

In this section we will develop some consequences of Milnor Patching. The culmination

will be a proof of Theorem 3.3(ii).

The modules A0 and B0 that appear in this section are as defined in 3.2.

Proposition 4.1. Diagram (7) is a pullback square if and only if the map A0 → B0

is injective.

Proof. Note first that because g is a non-zero-divisor on both R and S, the injectivity

of A0 → B0 is equivalent to the injectivity of (I, g)k/(gk) → (I, g)kS/gkS for all k.

Suppose first that the diagram is a pullback, let r ∈ (I, g)kR, and suppose that

φ(r) ∈ gkS. Write

φ(r) = gks

for some s ∈ S. Then r/gk ∈ R[I/g] and s ∈ S have the same image in S[I/g] so r/gk lifts

to R; in other words r ∈ gkR as needed.

Suppose conversely that the maps (I, g)k/(gk) → (I, g)kS/gkS are all injective. Sup-

pose that r′ ∈ R[I/g] and s ∈ S have the same image in S[I/g]. Write r′ = r/gk for some

positive integer k and r ∈ (I, g)k. Then r maps into gkS and so must be in gkR. In other

words, r/gk ∈ R. Moreover, r/gk must map to s ∈ S (using the fact that g is not a zero-

divisor on S). This establishes the required pullback property.

q.e.d.

Proposition 4.2. In diagram (7), the following conditions are equivalent:

a) The addition map R[I/g]× S → S[I/g] is onto.

b) The map A0 → B0 is onto.

Proof. First suppose a). Let s ∈ (I, g)kS. Then s/gk ∈ S[I/g] so by Proposition 2.3

we can write
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s

gk
=

r

gk+m
+ s̃

for some r/gk+m ∈ R[I/g] (i.e. r ∈ (I, g)k+m) and s̃ ∈ S.

Multiplying through by gk+m, we find that gms lifts to (I, g)k+m modulo gk+mS,

which is exactly what is required to prove b).

The same argument works in reverse to show that b) implies a).

q.e.d.

Corollary 4.3. In Theorem 3.3, statement (ii) is true.

Proof. Milnor Patching implies the pullback property, which, by Proposition 4.1,

implies that A0 → B0 is injective. Under the hypotheses of the statement, Proposition 2.3

and Proposition 4.2 combine to show that A0 → B0 is surjective also.

q.e.d.

Remark. If g is allowed to be a zero-divisor on S, 4.2 remains true (though 4.1 might

not).

5. Sufficient Conditions for Milnor Patching.

Proposition 5.1. Suppose in diagram (7) that the map A0 → B0 is an isomorphism

and that the maps An → Bn are surjective for all n ≥ 1. Then (7) is a Milnor Patching

Diagram.

Proof. By Proposition 4.1, the isomorphism A0 → B0 implies that (7) is a pullback

diagram. It therefore suffices to establish condition (b′) of Section 1.

Because g is a non-zero-divisor on S, we can safely identify elements of S with their

images in S[I/g], and will freely do so.

Let u ∈ GLm(S[I/g]). Write

u = α/gn

u−1 = β/gn

for some positive integer n, and some m×m matrices α and β with entries in (I, g)nS.
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By the surjectivity of An → Bn, there exists a positive integer k, elements r1 and r2

in (I, g)n+k, and elements s1 and s2 in S such that

gkα = r1 + g4n+ks1

gkβ = r2 + g4n+ks2.

Now note that we can factor

(
u 0
0 u−1

)
= φ′(A) ·B

where

A =

((
1− r1r2

g2n+2k

)
/gn r1/gn+k

−r2/gn+k gn

)
∈ GL2m(R[I/g]

and

B =
(

α −1 + g2ns1β
1− g2ns2α βs1β + g2ns2 − g4ns2s1β

)
∈ GL2m(S).

To check that A and B are invertible, one can explicitly write down their inverses:

A−1 =

(
gn −r1/gn+k

r2/gn+k
(
1− r2r1

g2n+2k

)
/gn

)
and

B−1 =
(

βs1β + g2ns2 − g4nβs1s2 1− g2nβs1

−1 + g2nαs2 α

)
.

q.e.d.

Remark. The proof of 5.1 should be compared to the proof of the Generalized

Analytic Isomorphism Theorem in [PAI]. The matrices in [PAI] appear more complicated

because they allow for the possibility that the map S → S′ is not injective. By imitating the

full proof from [PAI], Proposition 5.1 can be generalized to the case where g is permitted

to be a zero-divisor on S.

It should also be noted that while [PAI] makes the assumption that S′ = R′ ⊗R S,

the arguments there are actually valid under the more general circumstance that S′ is any
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quotient of R′ ⊗R S. In view of Proposition 2.3 of the present paper, this is the greatest

generality that can be hoped for.

Corollary 5.2. In Theorem 3.3, statement (i) is true.

6. Equivalent Conditions for Milnor Patching.

In this section we will prove statement 3.3(iii), completing the proof of Theorem 3.3.

Proposition 6.1. Let R be a ring, and let f and g be elements that form a regular

sequence on R. Then R[f/g] ≈ R[X]/(gX − f).

Proof. There is an obvious surjection R[X] →−→R[f/g], taking X to f/g. Let

p(X) = a0 + a1X + a2X
2 + . . . anXn

represent an element of the kernel. We will show that p is in the ideal generated by gX−f ,

using induction on n.

Note first that the case n = 0 is trivial. In the general case, we have a0g
n +a1g

n−1f +

. . . + anfn = 0. Since g is not a zero- divisor mod f , we can conclude that a0 = fa′0 for

some a′0. Then

p(X) = a′0 · (gX − f) + X · q(X)

where q(X) has degree n− 1.

Because X does not map to a zero-divisor in R[f/g], it follows that q(X) is in the

kernel and consequently in the ideal generated by (gX − f) by induction, which suffices to

complete the proof.

q.e.d.

Corollary 6.2. Under the assumptions of Proposition 6.1, the ring R[f/g]/(gR[f/g])

is a polynomial ring in one variable over R/(f, g).

Corollary 6.3. Suppose that φ : R → S is a ring homomorphism, that f and g are

elements of R that form a regular sequence on both R and S, and that the map

R[f/g]× S → S[f/g] (8)
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is a surjection. Then the map

R/(f, g) → S/(f, g)S

is a surjection also.

Proof. Use an overbar to denote reduction mod (f, g). Reduce (8) mod g and apply

6.2 to show that the natural map

R̄[X]× S̄ → S̄[X]

is onto, from which the corollary follows.

q.e.d.

Proposition 6.4. In the notation of Section 3, suppose that the map A0 → B0 is

surjective and that the map R/(I, g) → S/(I, g)S is surjective. Then the maps An → Bn

are surjective for all n.

Proof. Given non-negative integers n and k and given s ∈ (I, g)n+kS, we will show:

(*) For all t > 0, there exists m ≥ 0 such that gms ∈ (I, g)n+k+m + gn+k+m+tS.

Taking t = 3n in (*) will yield the result.

For t = 0, (*) simply asserts the surjectivity of A0 → B0, which is hypothesized.

Now suppose that (*) is true for t, so that we can write

gms = r + gn+k+m+ts′ r ∈ (I, g)n+k+m, s′ ∈ S.

Since R/(I, g) maps onto S/(I, g), we may write

s′ = r′ + s′′ r′ ∈ φ(R), s′′ ∈ (I, g)S.

Since A0 maps onto B0, there exists an ` such that

g`s′′ = r′′ + g`+1s′′′ r′′ ∈ φ((I, g)`), s′′′ ∈ S.

Putting this together yields
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gm+`s = g`r + gn+k+m+`+ts′

= g`r + gn+k+m+t+`r′ + gn+k+m+tr′ + gn+k+m+t+`+1s′′′

∈ (I, g)n+k+m+` + gn+k+m+`+t+1S

so that (*) holds for t + 1, on taking m + ` for the new value of m.

q.e.d.

Corollary 6.5 In diagram (7), suppose that I = (f) is a principal ideal and that

(f, g) is a regular sequence on both R and S. Suppose (in the notation of Section 3) that

the map A0 → B0 is onto. Then the maps An → Bn are onto for all n ≥ 0.

Proof. By 4.2, the map R[f/g] × S → S[f/g] is onto. By 6.3, the map R/(f, g) →

S/(f, g)S is also onto. By 6.4, this suffices.

q.e.d.

Corollary 6.6. Statement (iii) of Theorem 3.3 is true.

Proof. Under the hypotheses of the statement, we need to show that the maps

An → Bn are all isomorphisms. Surjectivity is established by 6.5, and injectivity is an

easy consequence of injectivity for A0 → B0.

q.e.d.

6.7. Discussion. One would like to show, in Theorem 3.3, that (c) implies (a) in cir-

cumstances more general than those of statement 3.3(iii). A variety of special results along

these lines are available. The arguments of this section will apply whenever R[I/g]/gR[I/g]

and S[I/g]/gS[I/g] are appropriately graded; this happens in many circumstances other

than the “I = (f) with (f, g) a regular sequence” circumstances discussed here.

Here is another passing observation, though one of surely limited interest: If I is

finitely generated, if (I, g)/(g) → (I, g)S/gS is onto, and if φ(R) + gS happens to be

integrally closed in S, then R/(I, g) → S/(I, g)S is onto and so is each An → Bn; hence

(7) is a Milnor Patching Diagram. (Proof left as exercise.)

17



7. Counterexamples.

Corollary 6.5 and the remarks following establish that in a variety of special circum-

stances, conditions (a) (b) and (c) of Theorem 3.3 are equivalent. The following example

shows that the implication (c) ⇒ (b) can fail.

Example 7.1. Let R be a UFD and let f and g be relatively prime, irreducible

elements of R and that (f, g) is not the unit ideal. Then the diagram

R −→ R[ f
g ]

↓ ↓
S = R[ g

f ] → R[ f
g , g

f ]

satisfies condition (c) of Theorem 3.3 (that is, the map A0 → B0 is an isomorphism), but

it is not a Milnor Patching Diagram.

Proof. The verification that A0 → B0 is an isomorphism is routine. (The UFD

property is used only to establish injectivity.)

If the diagram is Milnor Patching, the unit f/g ∈ R[f/g, g/f ] must split as a product

u · v where u is a unit in R[f/g] and v is a unit in R[g/f ]. But one checks easily that the

only units in R[f/g] and R[g/f ] are units in R, so such a factorization is impossible.

q.e.d.

One might suspect that the problem with Example 7.1 is related to the fact that

S′ = R[f/g, g/f ] is not equal to the tensor product R[f/g] ⊗R R[g/f ]. However, the

following example establishes that this is not the only difficulty:

Example 7.2. Let R, f , and g be as in Example 7.1, and suppose that R is not

2-dimensional. Then the following diagram satisfies condition (c) of Theorem 3.3, but is

not a Milnor Patching Diagram:

R −→ R[ f
g ]

↓ ↓
R[ g

f ] → R[ f
g ]⊗R R[ g

f ]
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Proof. Let M be a maximal ideal containing (f, g). Then the two vector spaces

(R[f/g])/(MR[f/g]) and (R[g/f ])/(MR[g/f ]) are both infinite dimensional over R/M . If

the diagram is Milnor Patching, this violates Corollary 2.5.

q.e.d.

The examples in this section eliminate the hope that all three conditions of Theorem

3.3 could be equivalent. However, I know of no counterexample to the assertion that

conditions (a) and (b) are always equivalent. If this could be established in complete

generality, it would go a long way toward completely characterizing all Milnor Patching

Diagrams.
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