
III. Geometry

In topology we studied manifolds; in geometry we study manifolds equipped with

metrics (to be defined in III.1). In topology we studied operators that depend on first

derivatives (i.e. tangent vectors); in geometry we study operators that depend on second

derivatives (e.g. the curvature tensor, to be introduced in III.3). In principle, there is

room for argument about whether the transition from topology to geometry is marked by

the introduction of the metric or the shift in emphasis from first to second derivatives. In

pratice, at least for our purposes, the two positions are more or less equivalent.

1. Metrics.

A. Basic Definitions

Reminders 1.1. Let M be a manifold. Let T 0,2M be the bundle of (0, 2)-tensors on

M (II.5.5). Let Γ(M,T 0,2M) be the set of sections (II.2.26) of T 0,2M . Then we have

Γ(M,T 0,2M) ≈ Γ(M,T ∗M ⊗ T ∗M) (1.1.1)

≈ Γ(M,Hom(T∗M,T ∗M)) (1.1.2)

≈ HomV B(T∗M,T ∗M) (1.1.3)

where the identification (1.1.1) is from (II.5.4), the identification (1.1.2) is from (I.4.13.1)

combined with (II.3.23), and the identification (1.1.3) is from (II.3.14).

Definition 1.2. Let g ∈ Γ(M,T 0,2M). Then g is nondegenerate if its image in

HomV B(T∗M,T ∗M) is an isomorphism of vector bundles.

Remark 1.3. According to (II.3.24), a vector bundle need not in general be iso-

morphic to its dual; in particular, the tangent bundle T∗M need not be isomorphic to

the cotangent bundle T ∗M . The existence of an isomorphism T∗M → T ∗M is (clearly)

equivalent to the existence of a nondegenerate section of T 0,2M .

Notation 1.4.. Given g ∈ Γ(M,T 0,2M) and given m ∈ M , we have (from the

definition of a section) g(m) ∈ T 0,2
m M . We will usually write gm instead of g(m).
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Exercise 1.5. Let M be a manifold and let g be a section of T 0,2M . Show that the

following two conditions are equivalent:

i) g is nondegenerate (1.2)

ii) For each m ∈M , gm ∈ T 0,2
m M is nondegenerate (I.6.3).

Definition 1.6. Let M be a manifold and let g be a section of T 0,2M . We say that

g is symmetric if g(m) ∈ T 0,2
m M is symmetric (I.6.2) for every m ∈M .

Definition 1.7. A section g : M → T 0,2M is called a metric on M if it is nondegen-

erate and symmetric.

Exercise 1.7.1. Show that g is a metric (1.6) if and only if each gm is an inner

product (I.6.4).

Blanket Assumption 1.8. Henceforth, M represents a manifold with a metric g.

Sometimes we will write (M, g) when it seems advisable to stress which metric we’re talking

about. We will use the same symbol g to denote the associated isomorphism

g : T∗M
≈−→T ∗M (1.8.1)

Definitions and Notation 1.9. Recall from (II.6.4) and (II.6.1) that a vector field

is a section X : M → T∗M and a one-form is a section ξ : M → T ∗M .

Given a vector field X, we define the associated one-form to be the composition g◦X,

and given a one-form ξ we define the associated vector field to be the composition g−1 ◦ ξ

where g represents the isomorphism (1.8.1).

Now let U ⊂M be open and recall from (II.2.27) that C(U) denotes the set of smooth

real-valued functions on U .

Given a vector field X : M → T∗M , and a vector field Y : U → T∗U ⊂ T∗M , we

define

< X,Y >=< g ◦X,Y >: U → R

where < g ◦X,Y > is as defined in (II.3.17).
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We also define

< X,− >: Γ(U, T∗M) → C(U)
Y 7→ < X,Y >

(1.9.1)

Exercises 1.10. i) Show that every one-form is associated to a unique vector field,

and every vector field is associated to a unique one-form.

ii) Given m ∈M , identify gm ∈ T 0,2
m M with a bilinear map

gm : TmM × TmM → R

as in (I.6.1). Show that for any two vector fields X and Y , we have

< X,Y > (m) = gm(X(m), Y (m)) ∈ R (1.10.1)

iii) Use the symmetry of g to show that < X,Y >=< Y,X >.

iv) For vector fields X, Y , and Z, and for a smooth function f : M → R, show that

< fX + Y, Z >= f < X,Z > + < Y,Z >

�
Remark 1.10.2. We could have used (1.10.1) to define < X,Y >, but then we

would have had to check that the functions < X,Y >: M → R and < X,− >:

M → T ∗M are smooth. This would have required us to reconstruct the definitions

in (1.9).

Notation 1.11. Suppose M is parallelizable (II.6.6) and let X1, . . . , Xn be a global

basis for M (II.6.7). Define

Xi ⊗Xj : M −−−−−−−−−−−−−−−→ T 0,2M
∪

m 7→ Xi(m)⊗Xj(m) ∈ T 0,2
m M
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Proposition 1.12. If M is parallelizable and X1, . . . , Xn is a global basis for M ,

then

g =
n∑

i,j=1

< Xi, Xj > (Xi ⊗Xj) : M → T 0,2M

Proof. This is an exercise in chasing through the definitions.

Remark and Notation 1.13. In view of (1.12), g is entirely determined by the n2

smooth functions < Xi, Xj >. But these functions cannot be arbitrary, because the sym-

metry condition implies that < Xi, Xj >=< Xj , Xi > and the nondegeneracy condition

imposes additional constraints.

We will say that the matrix of smooth functions
< X1, X1 > < X1, X2 > . . . < X1, Xn >
< X2, X1 > < X2, X2 > . . . < X2, Xn >

...
...

...
< Xn, X1 > < Xn, X2 > . . . < Xn, Xn >


represents g with respect to the global basis {X1, . . . , Xn}.

Definition 1.14. The global basis {X1, . . . , Xn} is called orthonormal (with respect

to g) if there exists a k, 0 ≤ k ≤ n, such that

< Xi, Xj >=

{−1 if i = j ≤ k
1 if i = j > k
0 if i 6= j

Definition 1.15. Let Xi be the vector field ∂/∂xi on Rn. Let k be an integer,

0 ≤ k ≤ n. The standard metric of signature k on Rn is the metric

−
k∑
i=1

Xi ⊗Xi +
n∑

i=k+1

Xi ⊗Xi

where 0 ≤ k ≤ n.

The usual metric on Rn is the standard metric of signature 0; i.e.

n∑
i=1

Xi ⊗Xi
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Exercise 1.15.1. Show that a metric g on Rn is a standard metric if and only if the

Xi form an orthonormal basis for g.

Example 1.16. Let x and y be the coordinates on R2. Consider the vector fields

X = cos(x2 + y2)
∂

∂x
+ sin(x2 + y2)

∂

∂y

Y = −sin(x2 + y2)
∂

∂x
+ cos(x2 + y2)

∂

∂y

(We first met these vector fields in (I.6.22).

It is a trivial consequence of the definition that ∂/∂x and ∂/∂y constitute an orthonor-

mal basis for the usual metric on R2. Show that X and Y constitute another orthonormal

basis for the same metric.

B. Induced Metrics.

Definitions 1.17. Let i : M → N be an injective map of manifolds. Given m ∈ M ,

write n = i(m). Then (II.4.15) gives a map

i∗m : TmM → TnN (1.17.1)

The map i is called an imbedding if for every m ∈M , the map (1.17.1) is injective.

Remarks and Definition 1.18. If i : M → N is an imbedding, we can use (1.17.1)

to identify TmM with a subspace of the vector space TnN where n = i(m). Thus any

inner product gn on TnN can be restricted to an inner product gm on TmM ; explicitly,

we can think of gn as a bilinear map

gn : TnN × TnN → R

and then just restrict this map to TmM × TmM .

Alternatively, we can apply the contravariant functor T 0,2 to (1.17.1) and get a map

T 0,2
n : T 0,2

n N → T 0,2
m M
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and then define the restriction gm to be T 0,2
n (gn) a la (I.6.5). According to (I.6.7), this

definition of the restriction is equivalent to that of the preceding paragraph.

According to the notation of (I.6.5), the restricted inner product should be called

(i∗m)∗(gn). We will abbreviate this to i∗gn.

Now let g be a metric on N and define a section i∗g : M → T 0,2M by

(i∗g)(m) = T 0,2(i∗m)(gi(m)) = i∗(gi(m)) (1.18.1)

Then i∗g is a metric on M , called the pullback of g to M . If the injection i : M → N

is an inclusion, we will also call i∗g the restriction of g to M or the metric induced on M

by g. In this case we will write g|M instead of i∗g.

Example 1.19. Consider the inclusion i : S2 ↪→ R3. The usual metric g on R3

induces a metric on S2. In this example, we will explicitly compute that induced metric.

First, we need to confine our attention to a coordinate patch on S2. We use the

coordinate patch of (II.1.3.7), (II.4.14.3) and (II.4.15.3); that is, Ω ⊂ S2 is the complement

of the set Z = {(x, y, z) ∈ S2|x ≤ 0, y = 0}. As in those earlier examples, we consider the

chart φ whose inverse is given by

φ−1 : (−π, π)× (−π2 ,
π
2 ) → Ω

(u, v) 7→ (cos(u) cos(v), sin(u) cos(v), sin(v))
(1.19.1)

so that v represents “latitude” and u represents “longitude”.

We will compute the matrix of g with respect to the global basis {∂/∂uφ, ∂/∂vφ}. (Of

course this is not a global basis on S2, but it is a global basis on the subset Ω to which we

have restricted our attention.)

For this we use (II.4.15.3.1) and (II.4.15.3.2), reproduced here for convenience:

i∗m

(
∂

∂uφ

)
= − sin(uφ) cos(vφ)

∂

∂x
+ cos(uφ) cos(vφ)

∂

∂y

i∗m

(
∂

∂vφ

)
= − cos(uφ) sin(vφ)

∂

∂x
− sin(uφ) sin(vφ)

∂

∂y
+ cos(vφ)

∂

∂z
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Here, as in earlier examples, vφ is shorthand for the function v ◦ φ.

Now we compute〈
∂

∂uφ
,
∂

∂uφ

〉
=
〈
i∗m

(
∂

∂uφ

)
, i∗m

(
∂

∂uφ

)〉
= sin2(uφ) cos2(vφ) + cos2(uφ) cos2(vφ)

= cos2(vφ)

Here the <,> on the left is defined with respect to the induced metric on Ω and

the <,> on the right is defined with respect to the usual metric on R3; the first equal-

ity is the definition of the induced metric and the second equality is computed using

< ∂/∂x, ∂/∂x >=< ∂/∂y, ∂/∂y >= 1 and < ∂/∂x, ∂/∂y >=< ∂/∂y, ∂/∂x >= 0.

Similar calculations show that〈
∂

∂uφ
,
∂

∂vφ

〉
=
〈

∂

∂vφ
,
∂

∂uφ

〉
= 0

〈
∂

∂vφ
,
∂

∂vφ

〉
= 1

so that the induced metric is represented by the matrix(
cos2(vφ) 0

0 1

)
(1.19.2)

Exercise 1.19.3. Carry out the “similar calculations” referenced in the preceding

paragraph.

Definition 1.20. Suppose M and N are manifolds with metrics gM and gN . An

isometry

i : (M, gM )→ (N, gN )

is a diffeomorphism

i : M → N

such that

i∗gN = gM
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Intuitively, the existence of an isometry means that there is no essential difference between

(M,gM ) and (N,gN ).

Two manifolds with metrics are isometric if there is an isometry from one to the other.

You should think of isometric manifolds as essentially indistinguishable.

Definition 1.21. Let f : M → N be a smooth map with image Ω ⊂ N . Then

f : (M, gM )→ (N, gN )

is called an isometric imbedding if Ω is open in N and the map

f : (M, gM )→ (Ω, gN |Ω)

is an isometry.

1C. Metrics on Vector Spaces

Discussion 1.22. Let V be a vector space. Then V automatically has the structure

of a manifold via (II.1.3.5).

As a vector space, V can be equipped with an inner product. As a manifold, V can be

equipped with a metric. In this subsection we will associate a metric to each inner product

and an inner product to each metric; that is, we will construct maps (of sets) Inner Products on
the Vector Space V

 F−→
←−
G

{
Metrics on

the Manifold V

}

We will see that the composition G ◦ F is the identity. The composition F ◦G is not

the identity. Those metrics g for which F (G(g)) = g are in a sense the “simplest” metrics.

We will call these metrics constant metrics and will develop a vocabulary for measuring

the extent to which a metric fails to be constant.

Construction 1.23. Given an inner product g on the vector space V , we want to

define a metric g = F (g) on the manifold V .

For each m ∈M , we have an isomorphism (II.4.16.3)

θm : V → TmV
v 7→ Dv
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where Dv denotes “differentiation in the direction v”. The idea is to transfer the inner

product g from V to TmV along this isomorphism; more precisely, define an inner product

gm on TmV by

gm(Dv, Dw) = g(v, w)

Now, thinking of gm as an element of T 0,2
m V , define a section

g = F (g) ∈ Γ(V, T 0,2V )

by

g(m) = gm

We will call F (g) the metric associated with g.

When more than one vector space is under discussion, we will write FV (g) instead of

F (g) as necessary to avoid confusion.

Definition 1.24. A metric of the form F (g) is called a constant metric.

More generally, let U be any open subset of V . Then on U , a metric of the form

F (g)|U is called a constant metric.

Exercise 1.25. Let i : V → W be an isomorphism of vector spaces and let g be an

inner product on W . Then

FV (i∗(g)) = i∗(FW (g))

Here i∗(g) is the pullback of the inner product g to the vector space V (I.6.6) and

i∗(F (g)) is the pullback of the metric F (g) to the manifold V (1.18).

Remarks and Definition 1.26. In (1.28) we will show that constant metrics are

particularly simple; here we introduce the vocabulary necessary to state that result:

Let (V, g) and (W,h) be vector spaces with metrics. A map

φ : (V, g)→ (W, g) (1.26.1)

is called a linear isometry if it is both an isomorphism of vector spaces and and isometry.
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(V, g) and (W,h) are linearly isometric if there exists a linear isometry (1.26.1).

Remark 1.27. Consider the following two conditions:

i) V is isomorphic to W and (V, g) is isometric to (W,h).

ii) (V, g) is linearly isometric to (W,h).

Then clearly (ii) implies (i), but the converse is not true. Thus linear isometry is a

very strong form of “looking exactly alike”.

Proposition 1.28. Let g be a constant metric on a vector space V . Then (V, g)) is

linearly isometric to (Rn, s) where s is a standard metric on Rn (1.15).

Proof. Write g = F (g) where g. Write k for the signature of g (I.6.10). Let

{v1, . . . , vn} be an orthonormal basis for V , let {e1, . . . , en} be the standard basis for

Rn, and let j : V → Rn be the unique linear transformation that takes vi to ei for all i.

Then j : (V, g)→ (Rn, s) is the desired linear isometry.

Construction 1.29. Let g be a metric on V . Let 0 be the zero element of V and

consider the inner product g0 on T0V . By (II.4.16.3), there is a natural isomorphism

θV,0 : V → TmV

which takes an element v to the “directional derivative in the v direction”.

Now define G(g) : V ⊗ V → R by

G(g)(v, w) = g0(θV,0(v), θV,0(w))

and call G(g) the inner product associated with the metric g .

Remark 1.29.1. It is immediate from the construction that if g and h are two metrics

with g0 = h0, then G(g0) = G(h0).

Remark 1.29.2. If U ⊂ V is an open subset containing 0 and if g is a metric on U ,

then we can still use (1.29) to define an inner product G(g) on V .

Exercise 1.29.3. Show that for any inner product g, we have G(F (g)) = g.
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Exercise 1.29.4. Show that a metric g is constant if and only if F (G(g)) = g.

Discussion 1.30. Given a metric g, we want to develop a measure of how far g is

from being constant. First we need to develop some language about smooth functions,

which will occupy (1.31) through (1.33).

Notation 1.31 Let M be a manifold, X ∈ Γ(M,T∗M) a vector field, and f : M → R

a smooth function. We will write X(f) or just Xf for the smooth function

M → R
m 7→ X(m)(df(m))

(This is the same notation we introduced in (6.16.2).)

Inductive Definition 1.32. Let M be a manifold, and f : M → R a smooth

function.

i) We say that f vanishes to order 1 at m ∈M if f(m) = 0.

ii) Let k be a non- negative integer. We say that f vanishes to order k at m ∈M if,

for every vector field X ∈ Γ(M,T∗M), the function Xf vanishes to order k − 1

at m.

Proposition 1.33. Let U be a parallelizable open set containingm and let {X1, . . . , Xn}

be a global basis for U . Let Y be any vector field and f any smooth function. Then if

Xif(m) = 0 for all i, we have Y f(m) = 0.

Proof. To compute Y f(m) we can first restrict f and Y to U ; thus we can assume

Y is of the form
∑n
i=1 giXi for some smooth functions gi. Thus

Y f(m) =
n∑
i=1

gi(m)Xif(m) = 0

Corollary 1.33.1. Under the assumptions of (1.33), suppose that Xif vanishes to

order k − 1 at m for all i. Then f vanishes to order k at m.

Exercise 1.33.2. Let φ : M → N be a smooth map of manifolds and let f : N → R

be a smooth map that vanishes to order k at φ(m) ∈ N . Show that φ ◦ f vanishes to order

k at m. (Use (II.4.12).)
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Definition 1.34. Let f, g : M → R be smooth functions. We say that f and g agree

up to order k at m if the function f − g vanishes to order k at m.

Remarks and Notation 1.35. Now that we know what it means for two functions

to agree up to order k at m, we want to decide what it means for two metrics to agree up

to order k at m.

We will offer a definition only in the case where M = U is an open subset of a vector

space V and m = 0 is the zero element in V .

For any metric g on U , and any two vector fields X,Y , let < X,Y >g be the smooth

function that is denoted < X,Y > in (1.9).

Proposition 1.36. Let g and h be metrics on U . The following conditions are

equivalent:

i There exists an isomorphism φ : V → Rn such that for every j, k ∈ {1, . . . , n},

the functions〈
∂

∂xφj
,
∂

∂xφk

〉
g

and

〈
∂

∂xφj
,
∂

∂xφk

〉
h

(1.36.1)

agree up to order k at 0.

ii For every isomorphism φ : V → Rn and for every j, k ∈ {1, . . . , n}, the functions〈
∂

∂xφj
,
∂

∂xφk

〉
g

and

〈
∂

∂xφj
,
∂

∂xφk

〉
h

(1.36.2)

agree up to order k at 0.

Definitions 1.37. 1) Two metrics g and h agree up to order k at 0 if either (and

hence both) of the equivalent conditions in (1.36) are satisfied.

2) A metric g is constant up to order k if g and F (G(g)) agree up to order k at 0.

3) Let (V, gV ) be a vector space with inner product, (M, gM ) a manifold with metric,

and f : V →M a diffeomorphism. Then f is an isometry up to order k at 0 if the metrics

F (gV ) and f∗gM agree up to order k at 0.
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4) More generally, Let (V, gV ) be a vector space with inner product, U an open subset

containing 0, (M, gM ) a manifold with metric, and f : U →M a diffeomorphism. Then f

is an isometry up to order k at 0 if the metrics F (gV )|U and f∗gM agree up to order k at

0.

Exercise 1.37.1. Let (V, g) be a vector space with a metric. Show that g is constant

up to order k if and only if the identity map f : (V,G(g)) → (V, g) is an isometry up to

order k.

Generalize to the case where f is defined on an open subset of V containing 0.

Proposition 1.38. If the inner products g0 and h0 are the same, then g and h agree

up to order 1 at 0.

Proof. For any vector fields X and Y , we have

< X,Y >g (0) = g0(X,Y ) = h0(X,Y ) =< X,Y >h (0)

Corollary 1.38.1 Every metric is constant up to order 1.

Remark 1.38.2. In (5.9), we will give criteria under which a metric is constant up

to order 2; these criteria will be important in justifying the use of special relativity as

an approximation to general relativity. For use in (5.9), we record a criterion for being

constant up to order 2:

Proposition 1.39. Let g be a metric on V , φ : V → Rn an isomorphism, and

Xi = ∂/∂xφi . Then the following are equivalent:

i)

Xi < Xj , Xk > (0) = 0 for all i, j, k

ii) g is constant up to order 2.

Proof. Let X be an arbitrary vector field. By (II.4.12), X(0) is of the form
∑n
i=1 αiXi

where the αi are constants. So condition (1) implies that X < Xj , Xk > (0) = 0 for all

i, j, as needed.

III-13



Remark 1.40. (1.39) remains true if V is replaced by an open subset U ⊂ V

containing 0; exactly the same proof works.

2. Covariant Derivatives

Scholium 2.1. Imagine a point moving along a parameterized curve γ in our manifold

M . We can think of the parameter t as “time”, so that γ(t) represents the location of our

particle at time t. It is natural to want to talk about the velocity and acceleration of such

a particle.

It’s easy to define velocity: The velocity at time t is γ∗(t), the tangent vector to γ

at m = γ(t) (II.4.17). This velocity vector lives in the tangent space TmM . At a later

time t′, when the particle is at m′, the velocity vector lives in the tangent space Tm′M .

That makes it difficult to define acceleration. Intuitively, acceleration should be the rate

at which velocity is changing. But how can we compare two velocity vectors that live in

entirely different tangent spaces?

In (II.6.11), we observed that although TmM and Tm′M are isomorphic as vector

spaces, there is no preferred isomorphism between them and hence no preferred way to

identify vectors in TmM with vectors in Tm′M .

We observed also that if the n- dimensional manifold M is parallelizable, we can (by

definition) choose a global basis (II.6.9) consisting of n everywhere linearly independent

vector fields and use these to provide the missing identifications. Explicitly, if the vector

fields are X1, . . . , Xn, we identify

n∑
i=1

αi(Xi)m ↔
n∑
i=1

αi(Xi)m′ (2.1.1)

.

But this is unsatisfactory for two reasons: First, M need not be parallelizable; that

is, there might not exist a global basis. Second, even if M is parallelizable (or if we can

replace M by some parallelizable open set containing both m and m′), there is no preferred

choice of global basis and hence no preferred way of identifying tangent spaces.

III-14



We will address these concerns in reverse order. Thus we will temporarily dispense

with the first concern by assuming that a global basis exists, and address the second

concern: which of many global bases should we prefer?

In the absence of a metric, there is no clear answer. But if a metric has been specified,

we can give preference to those global bases that are orthonormal (1.14). In fairly general

circumstances, one can mimic the proof of (I.6.12.2) to show that such bases exist.

That narrows down the class of allowable bases, but it still fails to achieve uniqueness.

To see how far we are from uniqueness, consider R2 with its usual metric and consider the

following three orthonormal global bases:

{
∂

∂x
,
∂

∂y

}

{U, V } =
{

1√
2

(
∂

∂x
+

∂

∂y

)
,

1√
2

(
∂

∂x
− ∂

∂y

)}

{X,Y } where X and Y are as in (1.16))

Of these, the first and second both yield the same set of identifications among tangent

spaces, but the third does not. So we need some way of distinguishing global bases that

are “like” the first two from those that are “like” the third. It turns out that the Lie

bracket (II.6.21) provides the appropriate distinction. We have[
∂

∂x
,
∂

∂y

]
= 0 and [U, V ] = 0

but according to (II.6.24)

[X,Y ] 6= 0

Thus we confine our set of “preferred” global bases {Xi} to those which are both

orthonormal and such that

[Xi, Xj ] = 0 for all i, j (2.1.2)
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It turns out that this is enough; any two orthonormal global bases satisfying (2.1.2) both

yield the same identifications among tangent spaces. Thus we can solve the uniqueness

problem if we can choose an orthonormal global basis satisfying (2.1.2).

Usually, however, we can’t. First, our manifold might not be parallelizable; in other

words, there might be no global bases at all. Second, even if there is a global basis, there

might not be a global basis that is both orthonormal and satisfies (2.1.2).

Take, for example, the case of the 2- sphere. The 2-sphere has no global basis (II.6.8),

so we can’t even start this program. But suppose we restrict our attention to the subman-

ifold Ω ⊂ S2 considered in (1.19). On Ω, we found a global basis{
∂

∂uφ
,
∂

∂vφ

}
(2.1.3)

and this basis satisfies (2.1.2). But the calculation culminating in (1.19.2) shows that

(2.1.3) is not orthonormal. (In other words, the matrix (1.19.2) is not of the form (1.13.2).)

Conversely, the basis {
1

cos(vφ)
∂

∂uφ
,
∂

∂vφ

}
is orthonormal, but fails to satisfy (2.1.2). And in fact, Ω admits no global basis that

satisfies both desiderata simultaneously. Nevertheless, we have learned (or at least as-

serted) something useful: orthonormality plus the vanishing of Lie brackets, when it is

attainable, provides the uniqueness we are looking for. This will be a valuable lesson as

we now proceed to the question of existence.

What, then, should we do if M is not parallelizable, so that no global basis exists? If

m and m′ are distinct points, how are we to identify the tangent spaces TmM and Tm′M?

It’s true that we don’t have a global basis for M , but we can settle for less. Let C be

an imbedded curve passing through both m and m′. Instead of looking for vector fields

(i.e. maps from M to T∗M), we can look for maps Xi : C → T∗M which are sections

in the sense that for all c ∈ C, X(c) ∈ TcM . (In other words, the Xi are sections of the

vector bundle you get when you restrict T∗M to C.) If we can choose the Xi to be linearly

independent everywhere along C, we can use them to identify tangent spaces as in (2.1.1).
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It turns out that such families of sections always exist. Of course, we need to worry

about uniqueness. Here we take our cue from the lessons we learned in the case of global

bases. First, we should require the Xi to be not just everywhere linearly independent

but everywhere orthonormal; if they are evaluated at any c ∈ C the result should be an

orthonormal basis for TcM .

Second, orthonormality is not enough. We also need a condition involving Lie brackets;

it turns out that the precise statement of this condition requires us to think about choosing

our preferred orthonormal families not just for one curve at a time but for all curves

simultaneously; the Lie bracket condition will relate these choices to each other. After

carefully sorting this out, we will be able to eliminate all ambiguity arising from the choice

of the Xi.

Along the way, however, we’ve introduced a new source of ambiguity: the choice of

the curve C that connects m with m′. It turns out that this ambiguity is fundamental;

there is no natural way to resolve it. Indeed, we will be able to quantify the resulting

ambiguity and use it as a measure of the curvature of M .

When we choose a curve C through m and m′ and identify vectors in TmM with their

counterparts in Tm′M , we will say that we are parallel- translating vectors along C.

Parallel translation allows us to call two vectors in different locations “the same”,

and hence makes it possible to talk about the difference between two tangent vectors

at two different points. This in turn makes it possible to talk about the rate at which a

given vector field is “changing” as we move along the curve C. Therefore we will be able to

define a sort of “directional derivative” for a vector field Y in the direction X, where X is a

vector field having C as an integral curve. Conversely, if we knew how to define directional

derivatives, we’d be able to define parallel translation: Given a vector Ym ∈ TmM , choose

a vector field Y such that Y (m) = Ym and such that the directional derivative of Y along

C is zero; then Ym′ = Y (m′) ∈ Tm′M gets identified with Ym ∈ TmM .

When it comes to making all of this precise, it turns out to be much easier to go from

directional derivatives to parallel translation than the other way around. So we define
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directional derivatives (which are, in fact, called covariant derivatives) first and then use

them to define parallel translation. Parallel translation will be perfectly well defined along

any curve, but will depend on the curve chosen. Finally, we will investigate that dependence

and use it to define curvature.

Temporarily Unmotivated Definition 2.2. Let X and Y be vector fields on M .

For each open set U ⊂M , define a map

ζ(X,Y )U : Γ(U, T∗M)→ C(M)

by the formula

2ζ(X,Y )U (Z) = X < Y,Z > +Y < X,Z > −Z < X, Y >

− < X, [Y,Z] > − < Y, [X,Z] > + < Z, [X,Y ] >

Here the action of the vector field X on the smooth real-valued function < Y,Z > is

as in (II.6.8.12).

Proposition 2.3. For Z,W ∈ Γ(U, T∗M) and φ ∈ C(U), we have

ζ(X,Y )U (φZ +W ) = φζ(X,Y )U (Z) + ζ(X,Y )U (W )

Proof. Compute, using (1.10.iv) and (II.6.23).

Proposition 2.4. Given vector fields X and Y , there exists a vector field DXY such

that for all open U ⊂M and all vector fields Z : U → T∗U , we have

ζ(X,Y )U (Z) =< DXY,Z >

Proof. We apply Theorem (II.3.20) to the maps ζU = ζ(X,Y )U . Hypothesis (II.3.20i)

is just Proposition 2.3, and Hypothesis (II.3.20ii) is satisfied trivially, so the theorem is

applicable and shows that there exists a one-form ξ ∈ Γ(M,∗M) with

ζ(X,Y )U (Z) =< ξ,Z >

for all Z; now let DXY be the vector field associated (1.9) to the one-form ξ.
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Definition 2.5. The vector field DXY is called the covariant derivative of Y with

respect to X.

Proposition 2.6. For any vector fields X, Y and Z, we have

2 < DXY, Z > = X < Y,Z > +Y < X,Z > −Z < X, Y >

− < X, [Y,Z] > − < Y, [X,Z] > + < Z, [X,Y ] >

Proof. This is an instantaneous consequence of Definitions (2.2) and (2.5).

Proposition 2.7. The covariant derivative satisfies the following properties:

i) DφX1+X2Y = φDX1Y +DX2Y

ii) DX(Y1 + Y2) = DX(Y1) +DX(Y2)

iii) DX(φY ) = (Xφ)Y + φDXY

iv) X < Y,Z >=< DXY,Z > + < Y,DXZ >

v) DXY −DYX = [X,Y ]

In these equations, as always, X, Y and Z are vector fields, φ is a smooth real-valued

function, and the action of vector fields on smooth real-valued functions —in other words,

the meaning of terms like X(f)—is given by (II.6.18.2).

Proof. Again, these are computations. Note that the proofs of (i) is essentially

identical to the proof of Proposition (2.3).

�
Remark 2.7.1. Note that DφXY = φDXY but in general DX(φY ) 6= φDXY .

It follows that X and Y enter into formula (2.2) in a way that is less symmetric

than might appear to the casual observer.

Proposition 2.8. Let

E : Γ(M,T∗M)× Γ(M,T∗M)→ Γ(M,T∗M)
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be any function, and write EXY for the image of (X,Y ). Suppose that E satisfies

i) EφX1+X2Y = φEX1Y + EX2Y

ii) EX(Y1 + Y2) = EX(Y1) + EX(Y2)

iii) EX(φY ) = (Xφ)Y + φEXY

iv) X < Y,Z >=< EXY,Z > + < Y,EXZ >

v) EXY − EYX = [X,Y ]

Then EXY = DXY for all X and Y .

Proof. Apply (iv) three times to get

X < Y,Z >=< EXY,Z > + < Y,EXZ > (2.7.1)

Y < Z,X >=< EY Z,X > + < Z,EYX > (2.7.2)

Z < X, Y >=< EZX,Y > + < X,EZY > (2.7.3)

Add (2.7.1) to (2.7.2) and subtract (2.7.3) to get

X < Y,Z > +Y < Z,X > −Z < X, Y >

=< Z,EXY + EYX > + < Y,EXZ − EZX > + < X,EY Z − EZY >

= 2 < Z,EXY > + < Z,EYX − EXY > + < Y,EXZ − EZX > + < X,EY Z − EZY >

The three rightmost terms can be simplified using (iv), and the result follows from (2.6).

Motivation 2.8. We will think of the covariant derivative as describing the “rate of

change of Y in the direction indicated by X”. The contorted looking definition (2.2) is

justified by the plausible looking properties (2.7) together with the fact (2.8) that no other

definition could satisfy these properties.

Conditions (2.7i) through (2.7iii) simply say that the covariant derivative should be-

have like a directional derivative. The remaining two conditions are more substantive.

To gain some insight into (2.7iv), consider the case where DXY = DXZ = 0, so that

Y and Z are both unchanging in the X direction. Then the right side of (2.7iv) is clearly
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0, so the left side is 0, which is to say that the inner product < Y,Z > is also unchanging

in the X direction. For example, if Ym and Zm are part of an orthonormal basis for TmM ,

then Ym′ and Zm′ will be part of an orthonormal basis for Tm′M , provided m′ can be

reached from m by traveling along an integral curve for X.

Condition (2.7v) is a bit more mysterious; it is the “Lie bracket condition” referred

to in Scholium (2.1) which is used to make the covariant derivative—and hence parallel

translation—uniquely defined. Without (2.7v), the uniqueness theorem (2.8) would fail.

Remarks 2.9. In many treatments, a covariant derivative (or an affine connection) is

defined to be any function (X,Y ) 7→ DXY satisfying (2.7i) through (2.7iii); this definition

does not require the manifold M to be equipped with a metric. In such treatments,

D is then defined to be compatible with the metric if a metric is specified and (2.7iv)

holds, and D is defined to be torsion free if (2.7v) holds. One then proves that there

is a unique covariant derivative that is compatible with the metric and torsion free—in

other words, one proves (2.8). This unique covariant derivative is called the Levi-Civita

connection. In this book, we will have no need of covariant derivatives other than the

Levi-Civita connection, so we have simply defined the Levi-Civita connection to be the

covariant derivative.

Example 2.10. On Rn with one of the standard metrics (1.15), consider the vector

fields

Xi =
∂

∂xi

Each < Xj , Xk > is constant, so

Xi < Xj , Xk >= 0

for all i, j, and k.

Also,

[Xi, Xj ] = 0

for all i and j by (II.6.21). Thus (2.6) reduces to

< DXiXj , Xk >= 0
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for all i, j and k.

Because the Xk are a global basis, it follows that for every vector field Y ,

< DXiXj , Y >= 0

Thus < DXiXj ,− >=< 0,− >, so, by the uniqueness in (1.10i),

DXiXj = 0 for all i and j (2.10.1)

Exercise 2.11. Let x be the standard coordinate on R = R1, let X = ∂/∂x, let

g : R→ R− {0} be a differentiable function, and let g be the metric on R represented in

terms of the global basis {X} by the 1× 1 matrix (g) (1.13).

When R is given the metric g, show that

DXX =
g′

2g
X

Example 2.12. Let Ω ⊂ S2 be the coordinate patch described in (1.19) and consider

the two vector fields

U =
∂

∂uφ
V =

∂

∂vφ

We will compute the covariant derivative DUU . Note first that [U,U ] = [U, V ] = [V,U ] =

[V, V ] = 0 (II.6.21), so that we will always be able to ignore the final three terms in (2.6).

Recall also from (1.19) that we have

< U,U >= cos2(vφ) < U, V >=< V,U >= 0 < V, V >= 1

Now, from (2.6),

2 < DUU,U > = U < U,U >=
∂

∂uφ
(cos2(vφ)) = 0

2 < DUU, V > = 2U < U, V > −V < U,U >= − ∂

∂vφ
(cos2(vφ)) = 2 cos(vφ) sin(vφ)

(2.12.1)
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Writing DUU = fU + gV , (2.12.1) gives

< fU + gV, U >= f < U,U > +g < U, V >= f · cos2(vφ) = 0

< fU + gV, V >= f < U, V > +g < V, V >= g = cos(vφ) sin(vφ)

so that

DUU = cos(vφ) sin(vφ)V (2.12.2)

Exercise 2.12.3 Show that

DUV = DV U = − tan(vφ)U (2.12.4)

DV V = 0 (2.12.5)

Remark 2.13. We still don’t quite have everything we need. We want to define

“directional derivatives” in the direction of a tangent vector , whereas (2.6) only tells us

how to take directional derivatives in the direction of a vector field. Our next task is to

remedy this situation.

Theorem 2.14. Given a vector field Y ∈ Γ(M,T∗M), there exists a map of vector

bundles

D(Y ) : T∗M → T∗M

such that for every vector field X and for every m ∈M , we have

(DXY )(m) = D(Y )(X(m)) ∈ TmM (2.14.1)

Proof. For U ⊂ M open, write write YU for the restriction of Y to U . For X ∈

Γ(U, T∗M), define

θU (X) = DX(Y |U ) ∈ Γ(U, T∗M)

Claim 2.14.2 The maps θU constitute a sheaf map (II.2.32)

θ : T̃∗M → T̃∗M
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Proof of (2.14.2). Condition (II.2.32i) is equivalent to (2.7i) and condition (II.2.32ii)

is immediate from the definition.

Proof of (2.14) completed. Apply Theorem (II.2.35).

Definition 2.15. Let Y be a vector field on M , m ∈M , and t ∈ TmM . Then define

the covariant derivative of Y in the direction t by the formula

DtY = D(Y )(t) ∈ TmM

where D(Y ) is as in (2.14).

Proposition 2.16. The covariant derivative satisfies the following properties:

i) Dαt1+t2Y = αDt1Y +Dt2Y

ii) Dt(Y1 + Y2) = Dt(Y1) +Dt(Y2)

iii) Dt(φY ) = t(dφm)Y + φ(m)DtY

iv) t < Y, Z >= gm(DtY,Z(m)) + gm(Y (m), DtZ)

v) If X is a vector field then

DX(m)Y = DX(Y )m

Here t, t1 and t2 are tangent vectors, α is a real number, Y is a vector field, φ is a

smooth real-valued function, dφm is as in (II.4.5.2), and gm is as in (1.10ii).

Proof. These follow quickly from (2.7)(i-iv) and (2.13.1), except for (v), which is

immediate from the definition.

Remark 2.17. The remainder of this section will be devoted to computing DtY in

an important special case.

Proposition 2.18. Let I ⊂ R be an open interval, let γ : I → M be an imbedded

curve (II.4.17), let v = γ∗(t) be the tangent vector to γ at a point m (II.4.17), and let Y

be any vector field such that Y ◦ γ = 0. (Equivalently, for every m′ in the image of γ,

Y (m′) = 0 ∈ Tm′M .) Then

DvY = 0

III-24



Proof. Let Z be any vector field. Then the smooth function < Y,Z > satisfies

< Y,Z > ◦γ = 0, so by the definition of the tangent vector in (II.4.17), we have

v < Y,Z >= 0

Combining this with (2.15iv), we get

0 = gm(DvY,Z(m)) + gm(Y (m), DvZ)

= gm(DvY,Z(m)) + gm(0, DvZ)

= gm(DvY,Z(m)) (because gm is bilinear)

Now, at least after replacing M with an open subset of itself (which does not affect

any of the equations), every element of TmM is of the form Z(m) for some Z (II.2.6.1).

Thus we have

gm(DvY,−) = 0

which, by nondegeneracy of gm, implies DvY = 0.

Corollary 2.18.1. Let γ : I → M be an imbedded curve, let v = γ∗(m) be the

tangent vector to γ at a point m, and let Y1 and Y2 be vector fields such that Y1◦γ = Y2◦γ.

(Equivalently, Y1 and Y2 agree on the image of γ.) Then

Dv(Y1) = Dv(Y2)

Proof. We have

Dv(Y1)−Dv(Y2) = Dv(Y1 − Y2) (by (2.15ii))

= 0 (by 2.18))

3. Parallel Translation

Now that we have defined the covariant derivative, we can define parallel translation

along an imbedded curve.
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3A. Parallelism

Definition 3.1. Let I ⊂ R be an open interval, and let γ : I → M be an imbedded

curve. Let v = γ∗(m) be the tangent vector to γ at a point m. Then a vector field Y is

parallel along γ at m if

DvY = 0

Example 3.1.1. If Y ◦ γ = 0, then Y is parallel along γ by (2.17.1).

Definition 3.2. Let γ : I → M be an imbedded curve. Then a vector field Y is

parallel along γ if it is parallel along γ at m for every m ∈ γ(I).

Proposition 3.3. Let X be a vector field and let γ be an imbedded curve that is

an integral curve of X (II.6.13). Then a vector field Y is parallel along γ if and only if

DXY = 0.

Proof. This is an immediate consequence of the definitions.

Example 3.4. A vertical line in R2 is an imbedded curve

γ : R → R2

t 7→ (c, t)

for some constant c.

We will find all the vector fields that are parallel along the vertical line γ.In the

notation of Example (2.10), γ is an integral curve of the vector field X2. Thus a vector

field Y = fX1 + gX2 is parallel along γ if and only if

DX2Y = DX2(fX1 + gX2) = 0 (3.4.1)

at every point in the image of γ.

Using (2.7ii), (2.7iii) and (2.10.1), we can rewrite (3.4.1):

0 = DX2(fX1 + gX2)

=
∂f

∂x2
X1 +DX2X1 +

∂g

∂x2
X2 +DX2X2

=
∂f

∂x2
X1 +

∂g

∂x2
X2
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Because X1 and X2 are a global basis, this can happen only if

∂f

∂x2
=

∂g

∂x2
= 0

Thus a vector field Y = fX1 + gX2 is parallel along the vertical line γ if and only if f ◦ γ

and g ◦ γ are constants.

Exercise 3.5. Let x be the standard coordinate on R = R1, let X = ∂/∂x, let

g : R→ R−{0} be a smooth function, and let g be the metric on R represented in terms

of the global basis {X} by the 1× 1 matrix (g).

Let γ : R→ R be the identity function, and let f : R→ R be any smooth function.

When R is given the metric g, show that the vector field fX is parallel along γ if and

only if there exists a constant A such that

f = Ag−1/2

(Use (2.11).)

Example 3.6 We will find all of the vector fields that are parallel along a line of

longitude in S2.

We restrict our attention to the coordinate patch Ω of Example (1.19), and we use

the notation of that example. We define a line of longitude to be the imbedded curve

γ : (−π2 ,
π
2 ) → Ω

v 7→ φ−1(u0, v) (3.6.1)

for some constant u0. According to (II.4.17.1), the tangent vector to γ is V = ∂/∂vφ. So

a vector field Y = fU + gV is parallel along γ if

DV Y = DV (fU + gV ) = 0 (3.6.2)

at every point in the image of γ.

Using (2.15ii), (2.15iii), (2.12.4) and (2.11.5), we rewrite (3.6.2):

0 =
∂f

∂vφ
U + fDV U +

∂g

∂vφ
V + gDV V

=
∂f

∂vφ
U − f tan(vφ)U +

∂g

∂vφ
V

(3.6.3)
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Because U and V are everywhere linearly independent, (3.6.3) is equivalent to the two

conditions
∂f

∂vφ
= f · tan(vφ)

∂g

∂vφ
= 0

The solutions to these differential equations are

f =
A

cos(vφ)
g = B

for constants A and B. Thus Y is parallel along γ if and only if there are constants A and

B such that at every point in the image of γ we have

Y =
A

cos(vφ)
U +BV

Specific Example 3.6.4. Taking A = 0, B = 1, we find that the vector field V is

parallel along any line of longitude.

Specific Example 3.6.5. Taking B = 0, we find that any vector field

A

cos(vφ)
U

is parallel along any line of longitude.

Example 3.7. We will find all the vector fields that are parallel along a line of latitude

in S2. Continue to use the notation of (1.19) and (3.6). We define a line of latitude to be

an imbedded curve
γ : (−π, π) → Ω

u 7→ φ−1(u, v0) (3.7.1)

for some constant v0. The tangent vector to γ is U = ∂/∂uφ. So a vector field Y = fU+gV

is parallel along γ if

DUY = DU (fU + gV ) = 0 (3.7.2)

at every point in the image of γ.

Using (2.15ii), (2.15iii), (2.12.2) and (2.12.4), we rewrite (3.7.2):

0 =
∂f

∂uφ
U + fDUU +

∂g

∂uφ
V + gDUV

=
∂f

∂uφ
U + f cos(vφ) sin(vφ)V +

∂g

∂uφ
V − g · tan(vφ)U

(3.7.3)
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Because U and V are everywhere linearly independent, (3.7.3) is equivalent to the two

conditions
∂f

∂uφ
= g · tan(vφ) f · cos(vφ) sin(vφ) = − ∂g

∂uφ

The solutions to these differential equations are

f =
A sin

(
uφ sin(vφ)

)
−B cos

(
uφ sin(vφ)

)
cos(vφ)

(3.7.4)

g = A cos
(
uφ sin(vφ)

)
+B sin

(
uφ sin(vφ)

)
(3.7.5)

for arbitrary constants A and B.

Therefore Y = fU + gV is parallel along a line of latitude if and only if there are

constants A and B such that (3.7.4) and (3.7.5) hold at every point in the image of γ.

(Note that on the image of γ, we have vφ = v0, so that vφ can be replaced by v0 in

conditions (3.7.4) and (3.7.5).)

Specific Example 3.7.6. Taking A = 0, B = − cos(v0), equations (3.7.4) and (3.7.5)

become

f = cos
(
uφ sin(v0)

)
g = sin

(
uφ sin(v0)

)
Thus the vector field

cos
(
uφ sin(v0)

)
U − cos(v0) sin

(
uφ sin(vφ)

)
V (3.7.6.1)

is parallel along a line of latitude.

Specific Example 3.7.7. Taking A = 1, B = 0, equations (3.7.4) and (3.7.5) become

f = sin(
(
uφ sin(v0)

)
over cos(v0)

g = cos
(
uφ sin(v0)

)
Thus the vector field

sin
(
uφ sin(v0)

)
cos(v0)

U + cos
(
uφ sin(v0)

)
V (3.7.7.1)
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is parallel along a line of latitude.

Facts 3.8. Let I ⊂ R be an open interval containing the closed interval [a, b]. Let

γ : I →M be an imbedded curve. Let Yγ(a) ∈ Tγ(a)M be a tangent vector. Then:

3.8.1. There exists an ε > 0, an open subset U ⊂M , and a vector field Y on U such

that:

i) U contains the image under γ of the interval (a− ε, b+ ε).

ii) Y (γ(a)) = Yγ(a)

iii) Y is parallel along γ.

3.8.2. If Y1 and Y2 are vector fields satisfying these conditions, then Y1 ◦ γ = Y2 ◦ γ.

3.8.3. To prove facts (3.8.1) and (3.8.2), one uses charts to reduce to the case M = Rn

and then uses existence and uniqueness theorems from the theory of differential equations.

Definition 3.9. Given a curve γ and a tangent vector Yγ(a) as in (3.8), a vector field

satisfying the conditions in (3.8.1) is called a parallel continuation of Y along γ.

�
Remark 3.10. The facts in (3.8) can be generalized to arbitrary (not necessarily

imbedded) parameterized curves. For this purpose, one studies smooth functions

Y : I → TM with the property that Y (a) ∈ Tγ(a)M for all a ∈ I. Such a Y

is called a vector field along γ; note in particular that this definition does not require

Y (a) = Y (a′) even when γ(a) = γ(a′), so that when γ is not injective, Y cannot be

thought of as an ordinary vector field composed with γ.

We will not need this additional level of generality, so we will not develop the theory

of vector fields along a curve.

Definition 3.11. Henceforth, we will say that an imbedded curve γ passes through

m if m is in the image of γ.
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Definition 3.12. Let m and m′ be points in M and let γ : I → M be an imbedded

curve passing through m and m′. Write m = γ(a), m = γ(b).

Let Ym ∈ TmM be a tangent vector. The parallel translation of Y to m′ along γ is

the vector

τγm,m′(Ym) = Y (m′) ∈ Tm′M (3.12.1)

where Y is a parallel continuation (3.9) of Ym along γ. The vector τγm,m′(Ym) is independent

of the choice of Y by (3.8.2).

Proposition 3.13. The function τγm,m′ (3.12.1) is an isomorphism of vector spaces.

Proof. We must show two things:

Claim 3.13.1 τγm,m′ is a linear transformation.

Claim 3.13.2 τγm,m′ is bijective.

Proof of 3.13.1. Given two vectors Ym, Zm ∈ TmM and a real number α, let Y and

Z be parallel continuations of Y and Z along γ. Let U be the intersection of the domains

of Y and Z and define a vector field αY + Z on U by the formula

(αY + Z)(m) = αY (m) + Z(m)

Clearly αY + Z is a parallel continuation of αY (m) + Z(m) along γ. Thus

τγm,m′(αY (m) + Z(m)) = (αY + Z)(m′)

= αY (m′) + Z(m′)

= ατγm,m′(Ym) + τγm,m′(Zm)

Proof of 3.13.2. τγm′,m is an inverse for τγm,m′ .

Proposition 3.14. For Ym, Zm ∈ TmM , we have

gm′(τ
γ
m,m′(Ym), τγm,m′(Zm)) = gm(Ym, Zm)

Proof. Let Y and Z be parallel continuations of Ym and Zm along γ. Let v be the

tangent vector to γ at any point. Then by the definition of parallel continuation we have
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DvY = DvZ = 0, so it follows from (2.16iv) that v < Y,Z >= 0. Combining this with the

definiton in (II.4.17) and the formula in (II.4.15.2), we have

0 = v < Y,Z > =
∂

∂t
< Y,Z > (γ(t))

so that < Y,Z > (γ(t)) is constant as a function of t, and in particular

< Y,Z > (m′) = < Y,Z > (m)

as advertised.

Corollary 3.15. Parallel translation takes orthonormal bases to orthonormal bases.

Remark 3.16. Given an orthonormal basis for TmM , (3.15) says that parallel trans-

lation constructs an orthonormal basis at Tm′M , and (3.13.1) says that we can compute

the parallel translation of any vector by linearity as suggested in (2.1.1). Thus we have

fulfilled the program outlined in Scholium (2.1).

Example 3.17. We will compute the parallel translation map along a line of longitude

on the 2-sphere. We continue to use the notation of Examples (1.19), (2.12), (3.6) and

(3.7).

Let m = φ−1(u0, v0) be a point in the coordinate patch Ω; think of m as the point

with “longitude” u0 and “latitude” v0. Let γ be the imbedded curve (3.6.1) (the “line of

longitude through m”), and let m′ = φ−1(u0, v0 + ∆v) be another point in the image of γ.

We will compute the map τγm,m′ .

Claim 3.17.1:

τγm,m′

(
∂

∂vφ

)
=

∂

∂vφ

(Note that the same symbol ∂
∂vφ

is being used to denote tangent vectors in two distinct

tangent spaces.)

Proof. By (3.6.1), the vector field V is parallel along any line of longitude.

Claim 3.17.2:

τγm,m′

(
∂

∂uφ

)
=

cos(v0)
cos(v0 + ∆v)

∂

∂uφ
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Proof. By (3.6.2), the vector field
cos(v0)
cos(vφ)

U

is parallel along any line of longitude.

Conclusion 3.17.3. From (3.17.1), (3.17.2), and (3.13.1), we can compute the par-

allel translation of any tangent vector along our line of longitude:

τγm,m′

(
α

∂

∂uφ
+ β

∂

∂vφ

)
= α

cos(v0)
cos(v0 + ∆v)

∂

∂uφ
+ β

∂

∂vφ

Example 3.18. We will compute the parallel translation map along a line of latitude

on the 2-sphere. We continue to use the notation of the preceding example.

Let m = φ−1(0, v0). Let γ be the imbedded curve (3.7.1) (the “line of latitude through

m”), and let m′ = φ−1(u, v0) be another point in the image of γ. We will compute the

map τγm,m′ .

Claim 3.18.1:

τγm,m′

(
∂

∂uφ

)
= cos

(
u sin(v0)

) ∂

∂uφ
− cos(v0) sin

(
u sin(v0)

) ∂

∂vφ
(3.18.1.1)

Proof. By (3.7.6.1), the vector field

cos
(
uφ sin(v0)

)
U − cos(v0) sin

(
uφ sin(v0)

)
V

is parallel along a line of latitude. Evaluating at uφ = 0 and at uφ = u, we get the left

and right sides of (3.18.1.1).

Claim 3.18.2:

τγm,m′

(
∂

∂vφ

)
=

sin
(
u sin(v0)

)
cos(v0)

∂

∂uφ
+ cos

(
u sin(v0)

) ∂

∂vφ
(3.18.2.1)

Proof. By (3.7.7.1), the vector field

sin
(
uφ sin(v0)

)
cos(v0)

U + cos
(

(uφ) sin(v0)
)
V
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is parallel along a line of latitude. Evaluating at uφ = 0 and uφ = u, we get the left and

right sides of (3.18.2.1).

Conclusion 3.18.3. From (3.18.1), (3.18.2), and (3.13.1), we have enough informa-

tion to compute the parallel translation of any tangent vector along our line of latitude.

Exercise 3.19. Continue to use the notation of (3.17) and (3.19). Let ∆u,∆v ∈

(0, π/2) ⊂ R. Let

A = φ−1(0, 0) B = φ−1(∆u, 0)

C = φ−1(0,∆v) D = φ−1(∆u,∆v)

Let α be a line of latitude through A and B, let β be a line of longitude through B

and C, let γ be a line of longitude through A and D, and let δ be a line of latitude through

D and C. (See Figure (3.19.1).)

A B

CD

a

b
g

d
(3.19.1)

Show that the diagram

TAM
ταA,B−→ TBMyτγ

A,D

y τβ
B,C

TDM
τδD,C−→ TCM

(3.19.2)

is not commutative.

3B. The Covariant Derivative as a Derivative.

In this subsection, we will clarify the sense in which the covariant derivative behaves

like an ordinary directional derivative. First, we define the (ordinary) derivative of a map
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to a vector space.

Definition 3.20. Let V be a vector space, I ⊂ R an interval, and φ : I → V a

smooth function. Then for t0 ∈ I we define

φ′(t0) = lim
h→0

φ(t0 + h)− φ(t0)
h

(3.20.1)

To make sense of the limit, choose an isomorphism V ≈ Rn and take limits in Rn. It is

easy to check that the value of (3.20.1) does not depend on the choice of isomorphism.

Remark 3.20.2. For I ⊂ Rm and a smooth map φ : I → V , the obvious generaliza-

tion of (3.20) allows us to define the partial derivatives of φ with respect to the coordinates

on Rm.

Remarks 3.21. We want to define the derivative of a vector field along a curve. The

problem is that a vector field is not a map to a single vector space; it’s a map that takes

each of its values in a different vector space. The idea is identify all these vector spaces

with each other via parallel translation and then differentiate using (3.20). The result of

that process turns out to be the covariant derivative in the direction of the tangent vector

to the curve. Here is the precise result:

3.22. Proposition. Let α : I → M be an imbedded curve, let Z be a vector field,

and let A = α(t0) be a point on the image of α. Define

Ẑ : I → TmM

by

Ẑ(t) = ταα(t),α(t0)(Z(α(t)))

Let X = α∗(t0) be the tangent vector to α at A = α(t0). Then

Ẑ ′(t0) = DXZ(m)

Proof. Choose an orthonormal basis x1, . . . , xn for TAM . By (3.8), we can assume

(after replacing M with an open set U containing A) there are vector fields Xi that are

parallel along γ and satisfy Xi(A) = xi.
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For any B in the image of γ, we know by (3.15) that the Xi(B) form a basis for TBM .

Therefore we can write

Z(B) =
n∑
j=1

zj(B)Xj(B) (3.22.1)

for some real-valued functions zj .

Now for fixed h, let Ph be the vector field

Ph =
n∑
j=1

zj(α(t0 + h))Xj

(Note that the coefficients zj(α(t0 +h)) are constant functions.) Then Ph is parallel along

α and agrees with Z at α(t0 + h), so

Ẑ(t0 + h) = Ph(α(t0))

Therefore

Ẑ ′(t0) = lim
h→0

Ph(α(t0))− Z(α(t0))
h

= lim
h→0

∑n
j=1 zj(α(t0 + h))xj −

∑n
j=1 zj(t0)xj

h

=
n∑
j=1

∂(zj ◦ α)
∂t

(t0)xj

= DvZ(A)

where the final equality follows from the rules in (2.16) applied to (3.22.1), along with the

observation that DvXj = 0 for all j (because Xj is parallel along α).

Corollary 3.22.2. Let X and Z be vector fields, let α be a integral curve of the

vector field X, let A = α(t) and let B = α(t+ x). Then up to terms of order ≥ 2 in x, we

have

ταA,BZ(A) ≈ Z(B)− x ·DXZ(B)

Proof. By (3.22) we have (up to terms of order ≥ 2 in x)

ταB,AZ(B) ≈ Z(A) +DXZ(A)
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Applying ταA,B to both sides gives

ταA,BZ(A) ≈ Z(B)− x · ταA,BDXZ(A) (3.22.2.1)

Now applying (3.22) again with DXZ in place of Z, we get

x · ταA,BDXZ(A) ≈ x ·DXZ(B) (3.22.2.2)

Plugging (3.22.2.2) in to (3.22.2.1), the proposition follows.

Remarks 3.23. Proposition (3.22) bolsters the intuition that the covariant derivative

measures the velocity of a vector field in a given direction. At some level, this is entirely

circular: A velocity is a rate of change; to measure change, we have to know when two

vectors are the same; to declare two vectors the same, we define parallel translation; to

define parallel translation we use—the covariant derivative!

But (3.22) at least confirms tht our intuitions are internally consistent: If we think

of the covariant derivative as a velocity, then we can think of parallel translated vectors

as “the same”; and if we think of parallel translated vectors as “the same” then we can

think of the covariant derivative as a velocity.

There remains the overwhelmingly important fact that the phrase “the same” changes

its meaning when we parallel translate along a different curve. In Section 4, we will

introduce the Riemann curvature tensor to keep track of this variation.

4. Riemann Curvature

4.1. Overview. Refer back to Figure (3.19.1), which shows a piece of the 2- sphere.

In Exercise (3.19) , we calculated the results of parallel translation from A to C along two

different paths and found that the results were different; in other words, diagram (3.19.2)

does not commute.

Here’s another way to say the same thing: Start with a tangent vector at A and

parallel translate it all the way around the diagram from A to B to C to D and back to

A again. The result is not in general the same vector you started with. To see that the
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two statements are equivalent, translate them into symbols. Noncommutativity of (3.19.2)

means that

τβB,C ◦ τ
α
A,B 6= τ δD,C ◦ τ

γ
A,D (4.1.1)

The fact that traveling all the way around the diagram fails to get you back to where you

started means that

τγD,A ◦ τ
δ
C,D ◦ τ

β
B,C ◦ τ

α
A,B 6= 1TAM (4.1.2)

To get from (4.1.1) to (4.1.2), compose both sides on the left with the isomorphism

τ δC,D ◦ τ
γ
D,Aand use (3.12.2); to get from (4.1.2) to (4.1.1) do the same thing with the

isomorphism τ δD,C ◦ τ
γ
A,D.

Intuitively, the noncommutativity of diagram (3.19.2) reflects the curvature of the 2-

sphere; a vector p in TAM gets turned one way as it moves around the diagram in one

direction and turned another way as it moves around the diagram in the other direction.

By contrast, when S2 is replaced by Rn (which is intuitively “flat”), the analogous diagram

is commutative. (See (4.2.2).)

Our goal is to convert this insight into a definition of curvature. The idea is pretty

simple: We parallel translate a vector all the way around a square, see how much the

result differs from the identity, and take the difference as a measure of curvature. In

Subsection 4A we will compute the parallel translation; in subsection 4B we will formalize

the definition of curvature.

4A. Noncommutativity of parallel translation

Setup 4.2. We want to study parallel translation as we move around the sides of a

small “rectangle” in M .

The easiest way to create a rectangle is to introduce coordinates. So let (U, φ) be a

chart on M such that φ(U) contains the origin in Rn, let x and y be small positive real

numbers, and let A, B, C and D be points such that

φ(A) = (0, 0, 0, . . . , 0) φ(B) = (x, 0, 0, . . . , 0)
φ(C) = (x, y, 0, . . . , 0) φ(D) = (0, y, 0, . . . , 0)
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Let I, J ⊂ R be open intervals containing [0, x] and [0, y] respectively and define four

curves
α : I → M γ : I → M

t 7→ φ(0, t, 0, . . . , 0) t 7→ φ(y, t, 0, . . . , 0)

β : J → M δ : J → M
t 7→ φ(x, t, 0, . . . , 0) t 7→ φ(0, t, 0, . . . , 0)

Thus, inside M , the picture looks like Figure (4.2.1).

a

b

d
g

(4.2.1)
A

B

C

D When the vector z is
translated around the four
sides of the rectangle,
the resulting vector is
z'.  The difference v = z-z'
is a measure of the
curvature of M near A.z

z'v

Now let z be a tangent vector at A. We can parallel translate z around the rectangle,

from A to B along α, from B to C along β, from C to D along γ and from D back to A

along δ. Call the resulting vector z′ and set v = z − z′.

Exercise 4.2.2. Let M = Rn, let φ be the identity map from Rn to itself, and let z

be an arbitrary tangent vector to Rn at the origin. Show that v = 0; in other words, show

that in this case the diagram analogous to (3.19.1) is commutative.

Motivation 4.2. The vector v = z − z′ is a measure of the curvature of M near

the point A. Note that v depends on the chart (U, φ), the initial vector z, and the small

numbers x and y. Fixing the chart and the vector z, we can view v as a function

v : I × J → M
∩

R2

If we want to measure curvature at A rather than near A, we should compute partial

derivatives of v with respect to x and y. (These partialderivatives are defined a la (3.20.2).
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To this end, let X and Y be the vector fields

X =
∂

∂xφ1
Y =

∂

∂xφ2

Then we have:

Proposition 4.3. Let Z be any vector field such that Z(A) = z. Then

v(0, 0) = 0 (4.3.1)

∂v

∂x
(0, 0) =

∂v

∂y
(0, 0) = 0 (4.3.2)

∂2v

∂x2
(0, 0) =

∂2v

∂y2
(0, 0) = 0 (4.3.3)

∂v

∂x∂y
(0, 0) =

(
DXDY Z −DYDXZ

)
(A) (4.3.4)

Remark 4.3.5. Equation (4.3.4) is remarkable: The right-hand side appears to

depend on the vector field Z but the left- hand side depends only on the single value

z = Z(A). Thus the right-hand side’s dependence on Z must be illusory, though it takes

some calculation to pierce through the illusion.

Proof of 4.3. It is obvious that v(x, 0) = v(0, y) = 0 for all x and y, from which

(4.3.1), (4.3.2) and (4.3.3) all follow.

To prove (4.3.4), begin by setting:

z1 = ταA,B(z)

z2 = τβB,C(z1)

z3 = τγC,D(z2)

so that

z′ = τ δD,A(z3)

We will make a series of approximations, applying (3.22.2) to the vector fields Z, DXZ

and DY Z and always throwing away terms of order > 1 in x or y.
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First, we have

z1 ≈ Z(B)− xDXZ(B)

This gives

z2 = τβB,C(z1)

≈ τβB,CZ(B)− xτβB,CDXZ(B)

≈ Z(C)− yDY Z(C)− xDXZ(C) + xyDYDXZ(C)

Therefore:

z3 = τγC,D(z2)

≈ τγC,DZ(C)− yτγC,DDY Z(C)− xτγC,DDXZ(C) + xyτγC,DDYDX(C)

≈ Z(D) + xDXZ(D)− yDY Z(D)− xyDXDY Z(D)− xDXZ(D) + xyDYDX(D)

= Z(D)− yDY Z(D)− xyDXDY Z(D) + xyDYDX(D)

and finally:

z′ = τ δD,A(z3)

≈ τ δD,AZ(D)− yτ δD,ADY Z(D)− xyτ δD,ADXDY Z(D) + xyτ δD,ADYDXZ(D)

≈ Z(A) + yDY Z(A)− yDY Z(A)− xyDXDY Z(A) + xyDYDXZ(A)

= Z(A)− xyDXDY Z(A) + xyDYDXZ(A)

= z − xyDXDY Z(A) + xyDYDXZ(A)

as required.

4B. The Riemann Curvature Tensor

Discussion 4.4. Proposition (4.3) suggests that we ought to define curvature, more

or less, as the function that takes three vector fields X, Y and Z, to the vector field

DXDY Z −DYDXZ. We want this map to arise from a map of vector bundles

T∗M ⊗ T∗M ⊗ T∗M → T∗M

so it can be identified with a section of the bundle

T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ T∗M
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This doesn’t quite work, because the assignment

(X,Y, Z) 7→ DXDY Z −DYDXZ (4.4.1)

is not linear in X and Y . To make it work, we need a correction term; we will soon see

that the right correction term is −D[X,Y ]. In the particular situation of (4.2) and (4.3),

the correction term vanishes by (II.6.20).

The remainder of this section will be devoted to turning (4.4.1) into a rigorous defi-

nition.

Definition 4.5. Let X, Y and Z be vector fields on M . We define a new vector field

R(X,Y )Z = DX(DY Z)−DY (DXZ)−D[X,Y ]Z (4.5.1)

If X, Y and Z are vector fields defined on open subsets of M , we restrict all three

vector fields to the intersection of their domains, and then use (4.5.1) to define a vector

field R(X,Y )Z on that intersection.

Exercise 4.6. Continue to use the notation of Example (2.12) and use the computa-

tions summarized in (2.12.2), (2.12.4) and (2.12.5) to show that:

R(U,U)U = R(V, V )U = 0 R(U, V )U = −R(V,U)U = − cos2(vφ)V
R(U,U)V = R(V, V )V = 0 R(U, V )V = −R(V,U)V = U

Proposition 4.7. Let φ be a real- valued function. Then

R(φX1 +X2, Y )Z = φR(X1, Y )Z +R(X2, Y )Z (4.7.1)

R(X,φY1 + Y2)Z = φR(X,Y1)Z +R(X,Y2)Z (4.7.2)

R(X,Y )(φZ1 + Z2) = φR(X,Y )Z1 +R(X,Y )Z2 (4.7.3)

Proof. Compute, using (2.7) and (II.6.23) repeatedly.

Corollary 4.8. There is a unique vector bundle map

R : T∗M ⊗ T∗M ⊗ T∗M → T∗M
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such that for all vector fields X, Y and Z and for all m ∈M , we have(
R(X,Y )Z

)
(m) = R(X(m), Y (m), Z(m)) ∈ TmM

Proof. This is an application of (II.3.25).

Definition 4.9. Given m ∈M and tangent vectors x, y, z ∈ TmM , define

R(x, y)z = R(x, y, z) ∈ TmM

where the R on the right is as in (4.8).

Definition 4.10. Given m ∈ M , vector fields X,Y ∈ Γ(M,T∗M) and a tangent

vector z ∈ TmM , we write

R(X,Y )z = R(X(m), Y (m), z)

Proposition 4.11. There is a unique section

R ∈ Γ(M,Hom(T∗M ⊗ T∗M ⊗ T∗M,T∗M))

such that for all m ∈M and all x, y, z ∈ TmM ,

R(m)(x⊗ y ⊗ z) = R(x, y)z

Proof. Use (II.3.27).

Definition 4.12. According to (II.3.30) and , there are natural isomorphisms of

vector bundles

Hom(T∗M ⊗ T∗M ⊗ T∗M,T∗M) ≈ Hom(T∗M,⊗T∗M ⊗ T∗M,Hom(T ∗M,R))

≈ Hom(T∗M ⊗ T∗M ⊗ T∗M ⊗ T ∗M,R)

= (T∗M ⊗ T∗M ⊗ T∗M ⊗ T ∗M)∗

≈ T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ T∗M

Composing the section R of (4.11) with these natural isomorphisms, we get a section

of T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ T∗M called the Riemann curvature tensor.
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We will abuse both notation and language by using the symbol R and the name

“Riemann curvature tensor” to denote the tensor just defined, the section R of (4.11) and

the maps of (4.10), (4.9), (4.8) and (4.5).

Exercise 4.12.1. Continuing from Exercise 4.6, show that the Riemann curvature

tensor for the 2-sphere (or, more precisely, for the coordinate patch (1.20.1) on the 2-

sphere) is

R =− cos2(vφ)duφ ⊗ dvφ ⊗ duφ ⊗ ∂

∂vφ

+ cos2(vφ)dvφ ⊗ duφ ⊗ duφ ⊗ ∂

∂vφ

+ duφ ⊗ dvφ ⊗ dvφ ⊗ ∂

∂uφ

− dvφ ⊗ duφ ⊗ dvφ ⊗ ∂

∂uφ

Exercise 4.12.2. Let M = (Rn, s) where s is a standard metric (1.15). Show that

the Riemann curvature tensor vanishes.

Remarks 4.13. The vanishing of the Riemann curvature tensor is related to the

uniqueness of parallel translation. Specificially, let m and m′ be points, let γ : I →M and

δ : I →M be imbedded curves through m and m′, and let Y ∈ TmM be a tangent vector.

We seek conditions under which we can conclude that

τγm,m′(Y ) = τ δm,m′(Y ) (4.13.1)

It is possible to prove that a sufficient set of conditions for (4.13.1) is:

i) The Riemann curvature tensor is identically zero

and ii) There exists a map

H : I × I →M

such that H(t, 0) = γ(t), H(t, 1) = δ(s), H(0, s) = m and H(1, s) = m′ for all

s, t ∈ I.

A map H as in (ii) is called a homotopy from γ to δ. Such a homotopy always exists

if M is diffeomorphic to Rn. More generally, manifolds in which homotopies always exist
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are called simply connected. If M is simply connected, then, i) is a sufficient condition for

(4.13.1).

5. Geodesics and the Exponential Map

5A. Geodesics

In (3.23) we learned to think of the covariant derivative as a measure of velocity. Now,

after a few preliminaries, we will construct a measure of acceleration. We will then define

a geodesic to be a curve along which the acceleration is zero.

Fact and Definition 5.1. Let γ : I →M be an imbedded curve. Then there exists

a vector field V on M such that for each t, V (γ(t)) = γ∗(t). Any such vector field is called

a velocity field for γ.

Proposition 5.2. Let γ be an imbedded curve, let V and W be velocity fields for γ.

Let v = V (m) = γ∗(m). Then

DvV = DvW

Proof. Apply (2.18.1).

Definition 5.3. Let γ be an imbedded curve. The acceleration vector to γ at a point

m = γ(t) is the vector DvV , where v = γ∗(m) and V is a velocity field for γ. This is

well-defined (i.e. independent of the choice of velocity field) by (5.2).

Definition 5.4. An imbedded curve γ is a geodesic if at every point in the image of

γ, the acceleration vector is zero.

Exercise 5.4.1. Let φ : M → N be an isometry, and let γ : I →M be a parameter-

ized curve. Show that if φ ◦ γ is a geodesic in N then γ is a geodesic in M .

Proposition 5.5. Let V be a velocity field for γ. Then γ is a geodesic if and only if

V is parallel along γ.

Remark 5.6. Definition (5.4) can be generalized to curves that are not imbedded.

Suppose the interval I ⊂ R can be covered by subintervals Iα such that for every α, the
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restriction γ|Iα to Iα is an imbedded curve. Then we call γ a geodesic if each γ|Iα is a

geodesic.

Exercises 5.7.

i) Endow Rn with a standard metric (1.13). Let γ : I → Rn be a parameterized

curve. Show that γ is a geodesic if and only if it has the form

γ : I → Rn nudge
t 7→ (tα1 + β1, . . . , tαn + βn) (5.7.1)

for some α1, . . . , αn, β1, . . . , βn ∈ Rn.

ii) More generally, let V be any vector space with a constant metric (1.24), or even

more generally let U be an open subset of V containing 0 (again with a constant

metric). Show that the result of (i) continues to hold.

iii) Give R the metric described in (2.11). Show that γ : I → R is a geodesic if and

only if it satisfies a differential equation

γ′(x) = Ag(γ(x))−1/2

for some constant A. (Use (3.5).)

iv) On the 2-sphere, show that every line of longitude is a geodesic. By rotating the

coordinate system, show that every great circle is a geodesic. Show that every

geodesic is a segement of a great circle.

Remarks 5.8. Let (V, g) be a vector space with a metric. Exercise (5.7ii) says that

if g is constant, then all straight lines, and in particular all straight lines through the

origin, are geodesics. It’s natural to ask about a sort of converse: Suppose all straight

lines through the origin are geodesics. How close is g to being constant? Proposition (5.9)

answers this question.

Proposition 5.9. Let V be a vector space with metric g. Suppose that each “straight

line through the origin”

γ : I → Rn

t 7→ tv
v ∈ V fixed (5.9.1)
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is a geodesic. Then g is constant up to order 2 (1.35).

Proof. Let φ : V → Rn be any isomorphism and let Xi be the vector field ∂/∂xφi .

Given two functions f and g defined on V , we will write f ≡ g to mean that f(0) =

g(0). Then by (1.39), it suffices to show that

Xi < Xj , Xk >≡ 0 for all i and j (5.9.2)

To prove (5.9.2), we will need:

Claim 5.9.3. Let

φ(v) = (α1, . . . , αn) ∈ Rn

Then at any point m ∈ V , the tangent vector to (5.9.1) is given by

γ∗(m) =
n∑
i=1

αiXi(m)

Accepting this claim for the moment, and using the fact that (5.9.1) is a geodesic, it

follows that if we set

X =
n∑
i=0

αiXi

then

DXX ≡ 0 (5.9.4)

As special cases of (5.9.4), we have

DXiXi ≡ 0 for all i (5.9.5)

and

DXi+Xj (Xi +Xj) ≡ 0 for all i and j (5.9.6)

Now we can compute

0 ≡ DXi+Xj (Xi +Xj) (by (5.9.6)

≡ DXiXi +DXiXj +DXjXi +DXjXj (by (2.7i) and (2.7(ii)

≡ DXiXj +DXjXi (by 5.9.5)

≡ 2DXiXj by (2.7.5) and (II.6.20)
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so that

DXiXj ≡ 0 for all i and j (5.9.7)

Now use (2.7iv) and (5.9.7) to get

Xi < Xj , Xk > ≡< DXiXj , Xk > + < Xj , DXiXk >

≡< 0, Xk > + < Xj , 0 >

≡ 0

proving (5.9.2) and thereby completing the proof of (5.9) as advertised.

It remains only to prove the claim:

5.9.8. Proof of (5.9.3). We have

(φ ◦ γ)(t) = φ(tv)

= tφ(v) because φ is a linear transformation

= t(α1, . . . , αn) (5.9.3.1)

so, writing m = γ(t), we have

γ∗(m) = γ∗t

(
∂

∂t

)
by definition

= φ−1
∗m ◦ (φ∗m ◦ γ∗t)

(
∂

∂t

)
= φ−1

∗m

(
(φ ◦ γ)∗t

(
∂

∂t

))
by (II.4.16)

= φ−1
∗m

(
n∑
i=1

αi
∂

∂xi

)
from (5.9.3.1)

=
n∑
i=1

αiφ
−1
∗m

(
∂

∂xi

)

=
n∑
i=1

αiXi(m) from (II.4.15.2)

as needed.

Remark 5.10. In view of Remark (1.40), the proof of (5.9) works equally well when

V is not a vector space, but an open subset of a vector space containing the 0.
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5B. Geodesic Deviation

Next we will devise a formal measure of the tendency for nearby geodesics to drift

apart and show that it is completely controlled by the Riemann curvature tensor.

Definition 5.11. A family of geodesics consists of two open intervals I, J ⊂ R and

a smooth function γ : I × J →M such that for any fixed s ∈ I, the map

γ(s,−) : J → M

t 7→ γ(s, t)
(5.11.1)

is a geodesic.

At any point m ∈ γ(I × J), define the vector of geodesic deviation to be the tangent

vector to the imbedded curve

γ(−, t) : I → M

s 7→ γ(s, t)
(5.11.2)

As t varies, think of the vector of geodesic deviation as a measure of how quickly the

geodesics (5.11.1) spread apart.

Facts 5.12. Given a family of geodesics as in (5.11), there exist vector fields V and

W such that V is a velocity vector field for all the geodesics (5.11.1) and W is a velocity

vector field for all the curves (5.11.2).

Remark 5.12.1. We will want to measure the acceleration of the geodesic deviation

as we move along a given geodesic (5.11.1). In other words, we want to measure DVDVW .

The next proposition shows that the geodesic deviation is completely controlled by the

curvature tensor.

Proposition 5.13. With the notation of (5.11) and (5.12), we have

DVDVW = R(V,W )V

where R is the Riemann curvature (4.4).

Proof. By (II.6.2), [V,W ] = 0. Thus

R(V,W )V = DVDWV −DWDV V
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= DVDWV −DW (0) because (5.11.1)
is a geodesic

= DVDWV

= DVDVW by (2.7v)

C. Ricci Curvature

The Ricci curvature tensor is a measure of curvature that includes some but not all

of the information that is imbedded in the Riemann curvature tensor. The geometric

significance of the Ricci tensor will appear in Chapter IV.

Definition 5.14. Given a vector space V , recall from (I.5.2.6) that we have a con-

traction map
V ⊗ V ⊗ V ⊗ V ∗ → V ⊗ V
u⊗ v ⊗ w ⊗ f 7→ f(v)(u⊗ w)

Applying this map separately to each TmM ⊂ T∗M , we get a map of vector bundles

T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ T∗M → T ∗M ⊗ T ∗M (5.14.1)

(To check smoothness of (5.14.1), work with coordinate patches U that are parallelizable.)

Recall from (4.12) that the Riemann curvature tensor R is a section

R : M → T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ T∗M (5.14.2)

Composing (5.14.2) with (5.14.1) gives a section

R̂ ∈ Γ(M,T ∗M ⊗ T ∗M)

R̂ is called the Ricci curvature tensor.

Exercise 5.15. Return yet again to the example of the 2-sphere, most recently

revisited in Exercise (5.7iv). Show that the Ricci tensor is

− cos2(v)duφ ⊗ duφ − dvφ ⊗ dvφ
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Definition 5.16. Let g : T∗M → T ∗M be the isomorphism of (1.8). g−1 induces an

isomorphism of vector bundles.

g−1 ⊗ 1 : T ∗M ⊗ T ∗M → T∗M ⊗ T ∗M
ξ ⊗ ρ 7→ g−1(ξ)⊗ ρ

Now consider the smooth function

S : M R̂−→ T ∗M ⊗ T ∗M g−1⊗1−−−−−→ T∗M ⊗ T ∗M
Trace−−−−−→ R

where the trace map is given by (f, v) 7→ f(v) (see I.2.18). The function S is called the

scalar curvature function on M .

Exercise 5.17. Continuing from Exercise (5.15), show that the scalar curvature

function on the 2-sphere is the constant function with value −2.

Definition 5.18. The Einstein tensor is

R̂− 1
2
Sg

where R̂ is the Ricci curvature tensor (5.14), S is the scalar curvature function (5.15) and

g is the metric. The Einstein tensor will play a major role in future chapters.

Exercises 5.18.1 Show that for Rn, the Einstein tensor is zero. Show that for S2,

the Einstein tensor is zero.

D. The Exponential Map

Scholium 5.19. In special relativity, observers travel through a four- dimensional

vector space. In general relativity, observers travel through a four- dimensional manifold.

(This will be made precise in Chapter IV.) Measurements of time and distance are simplest

in special relativity, where the norm of a vector (I.6.8) can be thought of as a sort of

“distance from the origin” (though this “distance” has different physical interpretations

depending on whether g(v, v) is positive, negative or zero).

In general relativity, we’d like special relativistic measurements to continue making

sense. We accomplish this by thinking of the vector space TmM as a linear approximation
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to the manifold M . This requires a map from TmM (or at least a part of TmM) to M .

The map we construct is called the exponential map (for reasons that will be indicated in

Exercise 5.20) and denoted expm : TmM →M .

Here’s how we construct the exponential map: Given v ∈ TmM , find a geodesic

γ : I →M such that γ(0) = m and γ∗(0) = v. Such a geodesic exists and is unique by the

theory of ordinary differential equations.

(Here “uniqueness” means that if υ : J → M is another geodesic with υ(0) = m and

υ∗(0) = v, then γ|I∩J = υ|I∩J .) Thus we can set

Provisional Definition 5.19.1.

expm(v) = γ(1) ∈M

There are two problems with (5.19.1). First, the existence theorem does not guarantee

that 1 is in the domain of γ. Thus expm(v) might be undefined. Second, there is nothing to

guarantee that the map expm is one-one, which limits its usefulness as an “identification”

between its domain and its image.

However, we have the following:

Facts 5.19.2. For m ∈M , think of TmM as a manifold via (II.1.3.5). Then there is

an open set U ∈ TmM such that

i) 0 ∈ U

ii) expm(v) is defined for every v ∈ U

iii) expm(U) is an open subset of M (II.1.4) and hence a manifold in its own right

via (II.1.4.1).

iv) expm : U → exp(U) is a diffeomorphism.

Fact (i) is trivial (use the geodesic that is constant at m); Fact (ii) is another con-

sequence of the theory of ordinary differential equations, and Facts (iii) and (iv) can be

proved by invoking the Inverse Function Theorem from advanced calculus.
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Remarks 5.19.3. In view of (5.15.2), we can upgrade (5.19.1) from a provisional

definition to a full- fledged definition, provided we restrict the domain of expm to an open

set U as in (5.19.2). Of course, this open set U is not unique, so it is a slight abuse

of language to call expm the exponential map. In fact there is (for each m) a family of

exponential maps, one for each domain U . But, exponential maps defined on U1 and U2

will agree on U1 ∩ U2, so there is never any ambiguity about the expression expm(v).

Thus we define:

Definition 5.19.4. Given m ∈M , an exponential map expm consists of an open set

U as in (5.19.2) and a map expm : U →M defined as in (5.19.1). We often abuse language

by calling an exponential map the exponential map.

�
Remark 5.19.5. You might think we could remove all ambiguity by taking U

to be the union of all open sets on which an exponential map can be defined,

and then reserving the phrase the exponential map for the exponential map with

domain U . In fact, U is open by (II.1.5d). But this doesn’t work, because expm might

not be one-to-one on such a large domain, and that spoils (5.19.2iv).The problem is that

geodesics can cross. Imagine, for example, starting at a point m on the equator of the

2-sphere. A geodesic that sets out along the equator and a geodesic that starts out along

a meridian of longitude will eventually meet on the opposite side of the sphere. Thus for

appropriate choices of tangent vectors v1 and v2 pointing in these directions, we can have

expm(v1) = expm(v2).

Exercise 5.20. Let M = R. Write x for the standard coordinate on R and ∂/∂x for

the corresponding vector field. Let g be the usual metric on R, so that

g

(
∂

∂x
,
∂

∂x

)
= 1

Show that for any x ∈M , the exponential map is given by

expx

(
α
∂

∂x

)
= x+ α ∈ R
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Exercise 5.21. Let M = R − {0}. Write x for the standard coordinate on R and

∂/∂x for the corresponding vector field. Let g be the metric defined by

gx

(
α
∂

∂x
, β

∂

∂x

)
=
αβ

x2

(This metric arises naturally in the theory of Lie groups.) Show that

expx

(
α
∂

∂x

)
= xeα/x

(Use (5.11iii).)

Remarks 5.22. Immediately from the definition, every manifold M is a union of

open sets which are diffeomorphic to open sets in Rn. We can ask for something stronger:

Is it true that every manifold with metric (M, g) is a union of open sets that are isometric

to (Rn, s) where s is a standard metric?

The answer is no, but, using the exponential map, we will now show that another

answer is “yes, at least up to second order”:

Proposition 5.23. Let (M, g) be a manifold with metric, and let m ∈ M be any

point. Let U ⊂ TmM be an open set on which the exponential map expm is defined and

let Ω = expm(U) ⊂M . Let G(gm) be the metric on U defined in (1.29). Then the map

(U,G(gm))
expm−→ (Ω, g|Ω) (5.23.1)

is an isometry up to order 2 (1.37).

Proof. Let h = exp∗(g|Ω). It follows immediately from (5.4.1) that straight lines are

geodesics in (U,h). Thus, by (5.9) and (5.10), h is constant up to order 2. This means

(1.37(1)) that:

F (G(h)) agrees with h up to order 2 at 0

Chasing through the construction (1.29), you can verify that G(h) = gm, so we have:

F (gm) agrees with h up to order 2 at 0

which (1.37(4)) says precisely that (5.23.1) is an isometry up to order 2.
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Remarks 5.23.2. You can think of (5.23) and its proof as saying that near a given

point m, (M, g) is well approximated by the tangent space TmM , endowed with the con-

stant metric F (gm). On the other hand, by (1.28), the tangent space is linearly isometric

to (Rn, s) where s is a standard metric. Thus we can summarize our conclusion (in slightly

imprecise language) by saying that any manifold with metric looks locally and up to second

order like Rn with a standard metric.
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