Patching and Analytic Isomorphisms

Steven E. Landsburg

Proceedings of the American Mathematical Society, Volume 114, Issue 3 (Mar., 1992),
637-639.

Stable URL:
http://links jstor.org/sici?sici=0002-9939%28199203%29114%3 A3%3C637%3APAAI%3E2.0.CO%3B2-Q

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Proceedings of the American Mathematical Society is published by American Mathematical Society. Please contact
the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained
at http://www jstor.org/journals/ams.html.

Proceedings of the American Mathematical Society
©1992 American Mathematical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR

http://www.jstor.org/
Tue Aug 12 11:37:28 2003



PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 114, Number 3, MARCH 1992

PATCHING AND ANALYTIC ISOMORPHISMS

STEVEN E. LANDSBURG

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. We give a particularly simple proof of the Milnor Patching Property
for a class of diagrams that includes analytic isomorphism squares.

Consider a commutative diagram of commutative rings

R — R,

(1) hl 11’

R, —— R, @ R,.
A collection of patching data is a triple (P, P, ¢), where P; is a finitely
generated projective R;-module and
¢: PL®r Ry 5 R @r P

is an isomorphism of (R; ®g R;)-modules.
The category of finitely generated projective R-modules maps functorially to
the category of patching data via

(2) P— (P®rRi, R, ®r P, ¢)

with ¢ the obvious identification p®1®1+—1Q1®p.
We say that (1) is a Milnor patching diagram if (2) is an equivalence of
categories, with an inverse equivalence given by

(P1, Py, ) = {(p1, p2) | pi € Piand ¢(p1 ® 1) = 1 @ p>}.

In [M, Chapter 2], Milnor showed that (1) is a Milnor patching diagram if it
is a pullback in the category of rings and j is onto.
Another class of Milnor patching diagrams arises in the following way.

Analytic Isomorphism Theorem. Let

R — 4 R

(3) n| |4

S —* . §—Se@xr R
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be a pullback square of commutative rings. Suppose that there exists a multi-
plicatively closed subset £ C R such that:
(i) R =X 'R.
(ii) For every f € X, the induced map R/fR — S/fS is an isomorphism.
Then (3) is a Milnor patching diagram.

(Hypothesis (ii) is sometimes expressed by saying that 4 is an analytic iso-
morphism along X.)

The analytic isomorphism theorem was proved by Landsburg in [La] and
(implicitly) by Lindel in [Li] (cf. the proof of Lemma 4 in [Li]). [La] requires an
additional generic flatness hypothesis and [Li] requires an additional noetherian
hypothesis, but neither of these is necessary, as we shall see below.

Notice that if X consists of elements that are nonzero-divisors on both R
and S, then the injectivity of the induced maps in (ii) becomes equivalent to
the pullback property which is assumed earlier in the statement of the theorem.

Here we shall generalize the analytic isomorphism theorem in two directions,
by weakening the hypothesis and strengthening the conclusion. The resulting
proof of the analytic isomorphism theorem itself is undoubtedly the ultimate
in simplicity.

To state the new, stronger conclusion, say that (1) is a strong Milnor patching
diagram if it is a pullback in the category of commutative rings, and also:

For every n> 1, and every u € GL,(R; ®r R;),

(§ W) €i(GLan(R) - K(GLan(Re)) € GLan(Ry 92 Re).

The methods of [M] demonstrate that strong Milnor patching implies Milnor
patching. We conjecture that the converse is true. (This conjecture is based on
a variety of partial classification theorems for Milnor patching diagrams, some
not yet published.) However, strong Milnor patching conveys significantly more
information. For example, it easily implies that if P is a finitely generated
projective R-module of rank n which becomes free over each R;, then P can
be generated by 2n elements.

Now we can state and prove our main theorem.

Generalized Analytic Isomorphism Theorem. Let

R — L, R

(4) | |

S —k ., §'=S@x R
be a pullback square of commutative rings. Suppose that there exists a multi-
plicatively closed subset £ C R with the following properties:

(i) For every r' € R', there exists an element f € T such that fr' € i(R).
(ii) Forevery f€X,let I =i"'(fR')CR andlet K; = k™'(fS')CS.
Then the map induced by h, Is/fI; — K¢/ fKy, is an isomorphism.
(iii) No element of X is a zero-divisor on R’ or S'.

Then (4) is a strong Milnor patching diagram.

Note that condition (iii) does not require X to consist of nonzero-divisors
on R and §.
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If we take R’ = X~!R, this is a strengthening of the Analytic Isomorphism
Theorem. If we take X = {1} we recover Milnor’s Theorem.

Proof. Pick u € GL,(S"). By (i), there exist f € £ and a, B € M,(S) such
that k(a) = fu and k(B) = fu~!. Write I for the n x n identity matrix.
Then f2I — af € M,(S) maps to zero in M,(S’) and consequently (by the
pullback property) lifts to a matrix x € ker(M,(R) — M,(R")).

By repeated use of (ii), we can write a = A(r))+ f*s; and B = h(r) + f*s;,
with r, € M,(Iy) C My(R) and s, € M,(K;) C M,(S). Write i(r,) = fa, .

Now A(f2I —rr, —x) € f*S C M,(f*Ky), so by condition (ii) applied
to f2, we have f2I —rir, —x € M,(f*1). Consequently, f2(I —aja;) =
i(f*—rr,—x) € f*M,(R') C M,(f*R’). Write f2(I —aya;) = f3a’. By (iii),
we have I —a a; = fa'.

In a similar manner construct a” € M,(R’) such that I — aya, = fa” .

Now let ,
[ a
r'= (_a2 fI) € M,(R')

and note that ' is invertible because its (two-sided) inverse is given by
n-t_ ([T —a
= (2 ).

—I +apfs
<1 [rs20 BsiB+ 25, —fzszaﬂslﬂ) € M,(S)

and note that s is invertible because its (two-sided) inverse is given by

(/331/3+f252-f2531ﬂ052 I- /351,301)
—I+f asy )

Let

Finally, one checks easily that

ko= (g ).

(This equality is most easily verified after first multiplying each side by f2,
which is allowable by (iii).) O

Remark. We have not used the full strength of the injectivity of I;/fI, —
K;/fK;. The only consequence of this that we need is the following: for every

f€Z and reR,if i(r) € f2R' and h(r) € f*S, then i(r) € f3R’.

REFERENCES

[La] S. Landsburg, Patching theorems for projective modules, J. Pure Appl. Algebra 22 (1981),
261-277.

[Li] H. Lindel, Projektive Moduln Uber Polynomringen A[Ti, ..., Tm] mit Einem Regularen
Grundring A , Manuscripta Math. 23 (1978), 143-154.

M] J. Milnor, An introduction to algebraic K-theory, Princeton Univ. Press, Princeton, NJ,
1971.

DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO
80523



