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1. Introduction

Policy decisions frequently affect population size, either as a primary goal or as a

secondary consequence. This limits the applicability of approaches to social welfare which

take population size as given.

In this note I will write down a list of axioms for a social welfare function that takes

as arguments the utilities of an arbitrary (and variable) number of agents. I will then

prove that, when those axioms hold, every social welfare function must be a monotonic

transformation of one that is additively separable in the agents’ utilities.

In fact, the result is a bit stronger than that; I will show that if f is a social welfare

function satisfying the axioms, then there exists a monotonic function g of a single variable

such that for any n and any (x1, . . . , xn), we have

g ◦ f(x1, . . . , xn) =
n∑

i=1

g(xi) (1.1)

The aims of this paper are very modest. I do not claim to have the “right” list of

axioms and I do not claim that the theorem has important policy implications. I aim only

to illustrate a framework for dealing with welfare when the number of agents is a variable,

and to demonstrate that even with an extremely simple set of axioms, it is possible to

prove at least one theorem that is not entirely trivial.

2. Axioms and Examples

2.1. The Basic Setup

I assume that there is a finite but arbitrary population of individuals, each of whom
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has a (cardinal) utility represented by a single real number. I assume that there is some

utility level—which, after a rescaling—we can take to be zero—such that the planner is

always indifferent about adding a new individual with that utility level.

Thus the social welfare function f should take a finite but arbitrary collection of real

numbers as inputs, and for any vector u it should satisfy

f(u) = f(u, 0) (2.1.1)

To formalize this, think of Rn as a subset of Rn+1 by identifying the point (x1, . . . , xn) ∈

Rn with the point (x1, . . . , xn, 0) ∈ Rn+1. Then let X be the union over n of all spaces

Rn. (Mathematicians would write X = lim→Rn.)

A typical point in X is represented by an n-tuple of real numbers (n arbitrary), and

the two vectors (x1, . . . , xn) and (x1, . . . , xn, 0) represent exactly the same poiint of X.

Thus for functions defined on X, (2.1.1) holds by definition.

I will abuse notation in minor and obvious ways; for example, if u and v are vectors

of lengths m and n, I will write (u, v) for the vector of length m + n that results from

appending v to u.

For a real valued function f on X (or appropriate subsets thereof), it makes sense to

talk about the partial derivatives of f with respect to any of the coordinates xi; to take a

partial with respect to xn just restrict f to the subset Rn ⊂ X and use the usual definition

of partial derivative for a function on Rn.

Social welfare functions will be real-valued functions defined on subsets of X.

2.2. Axioms for the social welfare function

Let f : X → R be a function. (More generally, we can take the domain to be any

subset of X on which the axioms below continue to make sense). f is called a social welfare

function if it satisfies the following assumptions:

Assumption 2.2.1 (Differentiability and the Pareto property) f has first par-

2



tial derivatives in every direction, and they are all positive.

Assumption 2.2.2. (Symmetry) f is invariant under any permutation of the

coordinates.

Assumption 2.2.3 (Respect for Individual Judgments) If x is a single real

number, then f(x) = x. In other words, when the population consists of a single person,

the planner uses that person’s utility as the measure of social welfare.

Assumption 2.2.4 (Independence Axiom) Let u, v, and w be vectors of finite

length. Then f(v) ≥ f(w) if and only if f(u, v) ≥ f(u, w).

2.3. Theorem. Let {ui} be a finite collection of vectors of finite length. Let v be an-

other vector of finite (possibly zero) length. Then f(u1, . . . , un, v) = f(f(u1), . . . , f(un), v).

Proof. By 2.2.3, f(u1) = f(f(u1)). Thus by 2.2.4, f(u1, u2, . . . , un, v) = f(f(u1), u2, . . . , un, v).

Now apply the same argument successively to u2, . . . , un.

q.e.d.

2.4. Examples.

The following examples are all easily verified to be social welfare functions, except

that some fail to satisfy the Pareto property in certain regions. In those cases, we restrict

the domain to that region where the Pareto property holds.

2.4.1. Let

f(x1, . . . , xn) =
n∑

i=1

xi

2.4.2. Given p > 0, let

f(x1, . . . , xn) =

(
n∑

i=1

xp
i

)1/p

.

2.4.3. Let

f(x1, . . . xn) =

(
n∏

i=1

(xi + 1)

)
− 1
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2.4.4. Given a vector x = (x1, . . . , xn), let Sm(x) be the sum of all products of m

distinct elements of x. In other words,

S1(x) =
n∑

i=1

xi S2(x) =
∑
i 6=j

xixj etc.

Then let

f(x) =
S1(x) + S3(x) + . . .

1 + S2(x) + S4(x) + . . .

2.4.5. Let g be any real-valued function of a single variable which is both differentiable

and monotonically increasing. Then let

f(x1, . . . , xn) = g−1

(
n∑

i=1

g(xi)

)
.

2.4.5.1. Special cases. With g(x) = x, we recover 2.4.1. With g(x) = xp we recover

2.4.2. With g(x) = log(x + 1) we recover 2.4.3. With g(x) = 1
2 log

(
1+x
1−x

)
we recover 2.4.4.

3. Results.

The main result (Corollary 3.3) is that every social welfare function is of the form

given in example 2.4.5.

3.1. We begin by setting up correspondences between the set of social welfare func-

tions and the set of functions of a single variable.

3.1.1. From social welfare functions to functions of a single variable. Given

a social welfare function f , write f1 for the partial derivative of f with respect to the

first variable. Let g = L(f) be the function of a single variable defined by the following

conditions:

g′(y) =
1

f1(0, y)
(3.1.1.1)
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g(0) = 0 (3.1.1.2)

Clearly g is monotonoically increasing and differentiable. We take it to be defined on

the largest possible subset of R such that the above conditions make sense. (Note that

when f has a restricted domain, there may be values of y for which f1(0, y) is not defined).

3.1.1.3. Remark. Although (3.1.1.1) appears to give a special role to the variable

x1, the symmetry assumption (2.2.2) implies that the appearance is illusory.

3.1.2. From functions of a single variable to social welfare functions.

Let g be a real-valued differentiable monotonically increasing function defined on some

subset of R. Then define a social welfare function f = M(g) (on the largest subset of X

where this makes sense) by the condition

f(x1, . . . , xn) = g−1

(
n∑

i=1

g(xi)

)
. (3.1.2.1)

3.2. Theorem. (a) For any f , M(L(f)) = f . (b) For any g, L(M(g)) is a constant

multiple of g.

3.3. Corollary. Every social welfare function is as in Example 2.3.5. Two different

functions g1 and g2 define the same social welfare function if and only if g1 is a constant

multiple of g2.

3.4. Proof of 3.2.

3.4.1. Proof of 3.2(a). Given a social welfare function f , set g = L(f) (as defined

in 3.1.1). We need to show that

(g ◦ f)(x1, . . . , xn) =
n∑

i=1

g(xi). (3.4.1.1)

As both sides of 3.4.1.1. vanish at the origin, it suffices to show that both sides have

identical partial derivatives with respect to each variable. In view of remark 3.1.1.3, it
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suffices to show this for any particular variable. Taking that particular variable to be x1,

we need to show that

g′(f(x1, . . . , xn))f1(x1, . . . , xn) = g′(x1). (3.4.1.2)

From (3.1.1.1) we can rewrite this as

f1(x1, . . . , xn)
f1(0, f(x1, . . . , xn))

=
1

f1(0, x1)
(3.4.1.3)

or

f1(0, f(x1, . . . , xn)) = f1(x1, . . . , xn) · f1(0, x1). (3.4.1.4)

Therefore the theorem will be proved if we can establish equation (3.4.1.4).

3.4.1.5. Proof of 3.4.1.4. Let x0 be arbitrary. By Theorem 2.3, we have

f(x0, f(x1, . . . , xn)) = f(x0, . . . , xn) = f(f(x0, x1), x2, . . . , xn) (3.4.1.5.1)

Differentiating the left and right sides of this equation with respect to x0 and then

setting x0 = 0, we get

f1(0, f(x1, . . . , xn)) = f1(f(0, x1), x2, . . . , xn) · f1(0, x1). (3.4.1.5.2)

(3.4.1.5.2) will look exactly like (3.4.1.4) if f(0, x1) = x1. But f(0, x1) = f(x1, 0) by

Assumption 2.2.2 and f(x1, 0) = f(x1) = x1 by 2.1.1 and Assumption 2.2.3.

q.e.d.

3.4.2. Proof of 3.2(b). Given g, let f = M(g). Then, using the explicit formula

for M(g) in 3.1.2.1, it is straightforward to compute that

1
f1(0, x)

=
g′(x)
g′(0)

.

Thus L(M(g)) = L(f) = g/g′(0).

q.e.d.
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