
II. Topology

1. Manifolds

Definition 1.1. Let M be a set. An n-dimensional chart on M is a pair (U, φ) where

U ⊂M is a subset and φ : U → Rn is a one-one function onto an open subset φ(U) ⊂ Rn.

Think of a chart φ as labeling each point p ∈ U with the n coordinates of φ(p) ∈ Rn.

Definition 1.2. Given two charts φU : U → Rn and φV : V → Rn, set

Ω = φU (U ∩ V ) ⊂ Rn Ω′ = φV (U ∩ V ) ⊂ Rn

We say that the charts φU and φV are compatible if

i) Ω and Ω′ are both open in Rn and

ii) The map from Ω to Ω′ defined by

x 7→ φV (φ−1
U (x)) (1.2.1)

is infinitely differentiable.

(“Infinitely differentiable” is to be understood in the sense of advanced calculus; note

that the domain and codomain of (1.2.1) are both open subsets of Rn.)

Definition 1.3. An n- dimensional manifold is a set M together with a family A of

charts {(Uα, φα)} such that

i) M is the union of the Uα

ii) Every pair of charts in F is compatible.

iii) If (V, ψ) is a chart compatible with all the charts in F , then (V, ψ) ∈ A.

The family of charts A is called a smooth structure or a maximal atlas for M . (The

adjective “maximal” captures the essence of condition iii). A subset U of M is called a

coordinate patch if there exists a map φ such that (U, φ) ∈ A.

Remarks 1.3.1. Think of A as the set of allowable ways to coordinatize pieces of

M . Condition i) says that every point in M can be coordinatized in at least one way.
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Condition ii) says that every allowable change of coordinates is infinitely differentiable.

Condition iii) says that any change of coordinates is allowable, provided it is compatible

with the changes of coordinates that have already been allowed.

Abuse of Language 1.3.2. We will often call a set M a “manifold”, although

strictly speaking the manifold structure on M includes a specification of the family of

charts A. Whenever we speak of a manifold, we are assuming that a family of charts has

been specified.

Abuse of Language 1.3.3. A family of charts that satisfies 1.3(i) and 1.3(ii) (but

not necessarily 1.3(iii)) is called an atlas. By Zorn’s Lemma, every atlas is contained in

a maximal atlas. Sometimes, when we are given a set M and an atlas of charts on M ,

we will call M a “manifold”, implicitly assuming that the atlas has been replaced by a

maximal atlas that contains it.

Exercise 1.3.3.1. Prove that the maximal atlas containing a given atlas is unique,

so the replacement of an atlas by a maximal atlas in (1.3.3) is unambiguous.

Remark 1.3.4. What we’ve called a manifold is often called a smooth manifold,

to distinguish it from a topological manifold. A topological manifold is defined similarly,

except that the change of coordinate maps are required to be only continuous, not infinitely

differentiable. Topological manifolds will play no role in this book.

Example 1.3.5. Let V be a vector space of dimension k and let A be the set of all

isomorphisms V → Rk.

Claim 1.3.5.1. A is an atlas for V .

Proof. We must show that if λ, µ : V → Rk are isomorphisms then µ◦λ−1 : Rk → Rk

is infinitely differentiable in the sense of advanced calculus. More generally:

Claim 1.3.5.1.1. Any linear transformation Rk → R` is infinitely differentiable.

Proof. It follows from the proof of (I.2.4.1) that a linear transformation must be of
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the form

(x1, . . . , xk) 7→ (
k∑
j=1

α1jxj , . . .
k∑
j=1

α`jxj)

for some constants αij .

Convention 1.3.5.2. Henceforth, if V is a vector space, we will use the manifold

structure of (1.3.5) to treat V as a manifold.

Example 1.3.6. Let M be the unit circle {(x, y)|x2 + y2 = 1} ⊂ R2. Let U1 =

M − {(0, 1)} and U2 = M − {(0,−1)}. Define one- one functions

ψ1 : (0, 2π)→ U1 and ψ2 : (−π, π)→ U2

by

ψi(x) = (cos(x), sin(x))

and define φi : U → R1 by

φi = ψ−1
i

Then (U1, φ1) and (U2, φ2) constitute an atlas for M , which can be extended to a maximal

atlas, making M a manifold.

Exercise 1.3.7. Let M = S2 be the 2−sphere {(x, y, z)|x2 + y2 + z2 = 1} ⊂ R3.

Let Z = {(x, y, z) ∈ S2|x ≤ 0, y = 0} ⊂ S2 and let Ω be the complement of Z in S2.

Map (−π, π)× (−π2 ,
π
2 ) ⊂ R2 to Ω by

ψ : (u, v) 7→
(
cos(u) cos(v), sin(u) cos(v), sin(v)

)
and let φ = ψ−1 : U → R2. Show that (Ω, φ) is a well- defined chart on S2. By composing

φ with rotations of the sphere, construct additional charts to make S2 a manifold.

You should be able to visualize the coordinates u and v as “longitude” and “latitude”.

Definition 1.4. Let M be a manifold. A subset U ⊂ M is open in M (or just open

for short) if it is a union of coordinate patches.

1.4.1. If U ⊂M is open, then there is a natural way to make U into a manifold: For

every chart (Uα, φα) on M , declare (U ∩ Uα, φα|U∩Uα) to be a chart on U .
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Exercises 1.5. Let M be a manifold with maximal atlas A. Prove the following:

a) A subset U ⊂M is open if and only if: for every (Uα, φα) ∈ A, the set φα(U∩Uα)

is open in Rn.

b) If (U, φ) ∈ A and V ⊂ U is a subset, then V is open in M if and only φ(V ) is

open in Rn.

c) If (U, φ) ∈ A and V ⊂ U is open, then (V, φ|V ) ∈ A. (Use the maximality

condition (1.3.iii).)

d) The union of any number of open sets is open. The intersection of finitely many

open sets is open.

Definition 1.6. Let M and M ′ be manfolds with maximal atlases A and A′. A

function f : M →M ′ is called smooth if for every (V, ψ) ∈ A′, there is a subset {Uα, φα)} ⊂

A such that

i) f−1(V ) =
⋃
α Uα

ii) For each α, the map

ψ ◦ f ◦ φ−1
α : φα(Uα)→ ψ(V ) (1.6.1)

is infinitely differentiable.

Exercise 1.6.2. Show that a composition of smooth maps is smooth.

Exercise 1.6.3. Let B′ ⊂ A′ be a (non-maximal) atlas on M ′. Suppose that for every

(V, ψ) ∈ B′, there is a subset {(Uα, φα)} ⊂ A such that (1.6i) and (1.6ii) hold. Show that

f is smooth. Therefore, verifying smoothness can be much easier than you might think

from a naive reading of (1.6).

Example 1.6.4. Let V and W be vector spaces, thought of as manifolds via (1.3.5.)

Then any linear transformation f : V →W is smooth.

Proof. Choose isomorphisms φ : V → Rk and ψ : W → R` (these exist for some k

and ` by (I.1.10). Let B′ be the singleton set {(W,ψ)}, which is an atlas for W . Then the

singleton {(V, φ)} satisfies (1.6i) and (1.6ii), so by (1.6.2) it suffices to check that ψ◦f ◦φ−1
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is infinitely differentiable, which follows from (1.3.5.1.1).

Convention 1.6.5. Henceforth, if we write down a map from one manifold to another,

the map is assumed to be smooth.

1.7. In (1.8) we will record some additional facts about smooth maps between vector

spaces for later reference. First we need:

Lemma 1.7.1. Let Ω ⊂ Rm be an open subset and let g : Ω → Rk be a (not

necessarily differentiable) function. Let xi : Rk → R be the ith coordinate function and

let gi = xi ◦ g : Ω→ R. Then the following statements are equivalent:

i) The map g : Ω→ Rk is infinitely differentiable.

ii) Each of the maps gi : Ω→ R is infinitely differentiable.

iii) The map

Ω×Rk → R

(β1, . . . βm, α1, . . . , αk) 7→
∑k
i=1 αigi(β1, . . . , βm)

is infinitely differentiable.

Proof. This is a straightforward exercise in advanced calculus.

Proposition 1.8. Let M be a manifold, V a vector space, {v1, . . . , vn} a basis for V ,

and f : M → V a (not necessarily smooth) function. For each m ∈M , write (uniquely)

f(m) =
n∑
i=1

fi(m)vi

with fi(m) ∈ R. Then the following statements are equivalent:

i) The map f : M → V is smooth.

ii) Each of the maps fi : M → R is smooth.

iii) The map
M ×Rk → R

(m,α1, . . . , αk) 7→
∑k
i=1 αifi(m)

is smooth.
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Proof. Define a linear transformation ψ : V → Rn by

ψ

(
n∑
i=1

αivi

)
= (α1, . . . , αn)

Note that (V, ψ) is a chart on V .

Given a chart (U, φ) on M , set Ω = φ(U) ⊂ Rm, set g = ψ ◦ f ◦ φ−1 : Ω → Rk, and

consider the statements

i′) (1.7.1i) holds for every g that arises in this way.

ii′ (1.7.1ii) holds for every g that arises in this way.

iii′) (1.7.1iii) holds for every g that arises in this way.

By (1.6.3), (i), (ii) and (iii) are equivalent to (i′), (ii′) and (iii′) and hence, by (1.7.1),

equivalent to each other.

Definition 1.9. A smooth bijection with a smooth inverse is called a diffeomorphism.

Definition 1.10. Let M1 and M2 be manifolds, let V1 and V2 be open subsets of M1

and M2, and let f : V1 → V2 be a diffeomorphism. We define a new manifold, M1 ∪f M2

called the patching of M1 and M2 along f , as follows:

As a set, M = M1 ∪f M2 is the disjoint union of M1 and M2, modulo the equivalence

relation v ∼ f(v) for all v ∈ V1. In order to make M a manifold, we still have to define

charts.

For i = 1, 2 we use the obvious injection Mi ↪→M to identify Mi with its image. Thus

each subset of Mi is identified with a subset of M , so each chart on Mi gives a chart on

M . These charts (expanded to a maximal atlas per (1.3.3) make M a manifold.)

Exercise 1.10.1. Explicitly describe the unit circle as a patching of the sets U1 and

U2 from (1.3.6).

Exercise 1.10.2. Explicitly describe the 2-sphere as a patching of two subsets.

Definition 1.11. Let M1 and M2 be manifolds of dimension n1 and n2. We define

the (n1 + n2)-dimensional product manifold M1 ×M2 to be the cartesian product of the
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sets M1 and M2 provided with charts as follows:

Given charts (U1, φ1) on M1 and (U2,M2) on M2, define a chart (U1 × U2, φ) on

M1 ×M2 by

(u1, u2)→ (φ1(u1), φ2(u2)) ∈ Rn1+n2

As the (Ui, φi) range over charts for the Mi, these charts form an atlas for M1 × M2.

Extending this atlas to a maximal atlas, M1 ×M2 becomes a manifold.

Exercise 1.11.1. Show that a map to a product manifold M1×M2 is smooth if and

only if it becomes smooth after composing with each of the projection maps M1×M2 →Mi.

2. Vector Bundles

2.1. Intuition. Intuitively, a vector bundle over a manifold M is a manifold E that

can be constructed by attaching a vector space Em to each point m ∈ M in a smooth

way. For example, let M = R (thought of as a manifold) and attach to each point of M a

copy of R (thought of as a one-dimensional vector space). Imagine M as a horizontal line

and the attached vector spaces as vertical lines, and you’ll see that you’ve constructed R2.

Thus R2 is a vector bundle over R.

For another example, let S1 be the unit circle. Attach a vertical line (a one- dimen-

sional vector space) to each point of S1 and you’ll get a cylinder; thus the cylinder is a

vector bundle over S1. For a more interesting example, imagine giving each line a “twist”

as you attach it, slowly increasing the angle of the twist until you come back around to the

starting point, at which point you’ve twisted a full 180 degrees. (To prevent the twisted

lines from getting all tangled up with each other, use short open intervals instead of in-

finitely long lines and identify each short interval with the full real line via a function like

x 7→ tan(x).) This constructs a Mobius strip, so a Mobius strip is another example of a

vector bundle over S1.

A vector bundle E over M is a manifold in its own right, but it also comes equipped

with extra structure. First, there is the map p : E →M that takes Em ⊂ E to m; the pair

(E , p) is an example of what we will call a “manifold over M”. Next, there is the vector
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space structure on each Em, which makes (E , p) a vector bundle.

Our immediate goal is to make all of this precise. First we will study the properties of

manifolds over M . Then in (2.10) we will define trivial vector bundles, which, intuitively,

are those, like the cylinder, which can be constructed without “twisting”; that is, they

look like the cartesian product of M with a vector space. Finally, in (2.15), we will define

the general concept of a vector bundle.

2A. Manifolds Over M .

Definition 2.2. Let M be a manifold. A manifold over M is a manifold E together

with a map p : E →M .

Abuse of language 2.2.1. We will sometimes call E a manifold over M , suppressing

the reference to the map p. When we want to distinguish between E (which is a manifold)

and (E , p) (which is a manifold over M), we will call E the total space of (E , p).

Example 2.2.2. Any manifold of the form M×N is a manifold over M by projection

onto the first factor.

Definition 2.3. Let p : E → M be a manifold over M and let U ⊂ M be an open

subset. Then the restriction of E to U is the manifold p−1(U), which is a manifold over U

via the restriction of the map p. We write E|U for the restriction of E to U .

Trivial Exercise 2.3.1. Let U and V be open subsets of M . Prove that

(E|U ) |V = (E|V ) |U = E|U∩V

Definition 2.4. Let p : E → M be a manifold over M and let m ∈ M . Then the

fiber of E over m is the set Em = p−1(m) ⊂ E . Note that in general there is no obvious

manifold structure on p−1(m). Note also that E is the disjoint union of the sets Em.

Example 2.4.1. If E = M×N , (2.2.2) then Em can be identified withN via projection

on the second factor. In this case, Em does have an obvious manifold structure.

Definition 2.5. Let f : M → N be a map of manifolds. Suppose we have manifolds
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over M and N as indicated:
E Fyp1

y p2

M
f−→ N

Then a map φ : E → F is called a map over f if the following diagram commutes:

E φ−→ Fyp1

y p2

M
f−→ N

(Commutativity means that p2 ◦ φ = f ◦ p1.)

Note that the notion of a “map over f” depends on the maps p1 and p2, although this

dependence is suppressed in the terminology.

Definition 2.6. Let E1 and E2 be manifolds over M . A map φ : E1 → E2 is called an

M -map if it is a map over the identity map on M . An M - diffeomorphism is a map that

is both a diffeomorphism and an M -map. We say that E1 and E2 are M - diffeomorphic if

there is an M -diffeomorphism φ : E1 → E2.

Exercise and Notation 2.6.1. Let f : E → F be an M - map and let m ∈ M be a

point. Show that f(Em) ⊂ Fm. We will write

fm : Em → Fm (2.6.1.1)

for the restriction of f to Em.

2B. Trivializations and Vector Bundles

Definition 2.7. Let E be a manifold over M . A rank-k trivialization of E is an

M -diffeomorphism

τ : E →M ×Rk (2.7.1)

A trivialization is a map that is a rank-k trivialization for some k.

Example 2.7.2. The identity map on M ×Rk is a trivialization.

Definition 2.7.3. A manifold E over M is trivializable if there exists a trivialization

(2.7.1).
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Remark 2.7.4. If U ⊂ M is an open subset, then a trivialization of E restricts to a

trivialization of E|U (2.3).

Construction 2.8. Given a trivialization (2.7.1) and a point m ∈ M , we apply

(2.6.1.1) to get a map

τm : Em → {m} ×Rk

Composing with projection onto the second factor gives a map

f̃m : Em → Rk

Because τ is a diffeomorphism, both τm and f̃m are one-one and onto. It therefore makes

sense to define vector space operations on Em by setting

e1 + e2 = f̃−1
m (f̃m(e1) + f̃m(e2))

αe1 = f̃−1
m (αf̃m(e))

Definition 2.9. Two trivializations of E are equivalent if, for every m ∈ M , they

induce the same vector space structure on the fiber Em.

Exercise 2.9.1. Let σ and τ be rank k trivializations of E . σ and τ are equivalent

if and only if all of the maps σ̃m ◦ τ̃−1
m are linear transformations (and hence necessarily

isomorphisms) of Rk.

Definition 2.10. A trivial vector bundle is a manifold E over M together with an

equivalence class of trivializations of E .

Remark 2.10.1. To specify an equivalence class it is enough to name one member

of the class. So to specify a trivial vector bundle, it is enough to specify a manifold E over

M and one trivialization of E .

Example and Abuse of Language 2.10.2. M ×Rk, together with the equivalence

class of the identity map, is a trivial vector bundle. We will abbreviate this trivial vector

bundle M ×Rk, suppressing reference to the trivialization.
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Definition 2.11. Let E be a manifold over M and let U and V be open subsets of

M . Suppose we are given trivializations

τU : E|U → U ×Rk

τV : E|V → V ×Rk

We say that τU and τV are compatible if their restrictions to U ∩ V (2.7.4) are equivalent

(2.9).

Remark 2.11.1. For m ∈ U ∩ V , it is an immediate consequence of the definition

that if τU and τV are compatible, then they induce the same vector space structure on Em.

Definition 2.12. Let E be a manifold over M . A local trivialization of E consists of

i) a family of open subsets {Uα} in M whose union is all of M and

ii) for each Uα, a trivialization τα of E|Uα, such that for any two indices α and β,

the trivializations τα and τβ are compatible (2.11).

E is called locally trivializable if there exists a local trivialization of E .

Example 2.12.1. Any trivialization is a local trivialization. (Take the family {Uα)

to be the singleton {M}.)

Construction 2.13. Given a local trivialization of E and given a point m ∈ M ,

we define a vector space structure on Em as follows: First choose α such that m ∈ Uα,

then apply construction (2.8) to E|Uα . The outcome is independent of the choice of α by

(2.11.1).

Definition 2.14. Two local trivializations of E are equivalent if, for every m ∈ M ,

they induce the same vector space structure on the fiber Em.

Definition 2.15. A vector bundle is a locally trivializable manifold E over M together

with an equivalence class of local trivializations. Given a vector bundle, we will treat each

fiber Em as a vector space via construction (2.13).

A vector bundle has rank k if all the fibers Em have dimension k as vector spaces.
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Abuse of Language 2.15.1. When a vector bundle structure on E has been specified,

we will often say that E is a vector bundle, suppressing reference to the local trivializations.

Example 2.15.2. By (2.12.1), any trivial vector bundle is a vector bundle. In

particular, M ×Rk is a vector bundle.

Definition 2.16. Let E and F be vector bundles over M . A map of vector bundles

is an M -map f : E → F such that for every m ∈M , the induced map

fm : Em → Fm

(2.6.1.1) is a linear transformation of vector spaces.

�
Remark 2.16.1 Not every M - map f : E → F is a map of vector bundles.

Definition 2.17. A map of vector bundles is an isomorphism if it has a two-sided

inverse that is also a map of vector bundles. In particular, an isomorphism of vector

bundles must be an M - diffeomorphism and it must induce isomorphisms of vector spaces

on every fiber. Two vector bundles are isomorphic if there is an isomorphism from one to

the other.

Definition 2.18. A vector bundle is trivial if it isomorphic to the vector bundle

M ×Rk.

Exercise 2.18.1. Show that a vector bundle is trivial (in the sense of (2.18) if and

only if it is a trivial vector bundle (in the sense of (2.10).)

Our next results classify maps between trivial bundles. Proposition (2.19) and its

corollaries (2.19.1) and (2.19.2) will be needed only in Section 2C (which is optional) and

in the proof of (2.20.1).

Proposition 2.19. Let M be a manifold and let λ : M → Hom(Rk,R`) be any
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function (not necessarily smooth!) Define

µ : M ×Rk →M ×R`

by

µ(m,x) = (m,λ(m)(x))

Then λ is smooth (and hence a map of vector bundles) if and only if µ is smooth.

(Here Hom(Rk,R`) is treated as a manifold via (1.3.5.2).)

Proof. Let {v1, . . . , vk} be a basis for Rk, {w1, . . . , w`} a basis for R`, and {fij} the

basis for Hom(Rk,R`) defined in the proof of (I.2.4).

There are unique functions λij : M → R such that

λ(m) =
∑
i,j

λij(m)fij

By the equivalence of (1.8i) and (1.8ii), λ is smooth if and only if all the λij are smooth.

It’s easy to compute that

µ(m, vi) =

m,∑
j

λij(m)wj


By the equivalence of (1.8(ii)) and (1.8(iii)), together with (1.11.1), µ, like λ, is smooth if

and only if all the λij are smooth.

Corollary 2.19.1. Let M be a manifold. There is a one-one correspondence between

i) Smooth maps

λ : M → Hom(Rk,R`)

ii) Vector bundle maps

µ : M ×Rk →M ×R`

Proof. Given λ as in (i), define µ by

µ(m,x) = (m,λ(m)(x))
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Given µ as in (ii), write µ(m,x) = (m, µ̃(m,x)) and define λ by

λ(m)(x) = µ̃(m,x)

Clearly these operations are inverse to each other.

Corollary 2.19.2. Let GLk(R) ⊂ Hom(Rk,Rk) be the set of isomorphisms from Rk

to itself. Define a map to GLk(R) to be smooth if it is smooth as a map to Hom(Rk,Rk).

Then there is a one-one correspondence between

i) Smooth maps

M → GLk(R)

ii) Vector bundle isomorphisms

M ×Rk →M ×Rk

2.20. Constructing Vector Bundles. We will describe a general procedure for

constructing vector bundles over a manifold M . The technical points are conceptually

simple but notationally frightening, particularly in the proof of (2.20.1). This material

will be used only in the verification that definition (3.4) makes sense; the reader who is

willing to gloss over a few technical points in (3.4) can safely skip the remainder of Section

2B.

Suppose we are given the following data:

i) A set (not a manifold!) E

ii) A function p : E →M .

iii) A family of charts {(Uα, φα)} on M

iv) A collection of bijections

τα : EUα = p−1(Uα)→ Uα ×Rk

We would like to give E the structure of a vector bundle, with the (Uα, τα) as a local

trivialization. But before E can be a vector bundle, it has to be a manifold, which means we
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need charts for E . The obvious candidates for coordinate patches are the pairs (EUα , ψα)

where ψα is the composition

ψα : EUα
τα−→ Uα ×Rk → Rn ×Rk ≈ Rnk

(m,x) 7→ (φα(m), x)

where we have chosen once and for all an arbitrary isomorphism Rn ×Rk → Rn+k.

In order for the ψα to be a compatible family of charts, it is necessary and sufficient

that for every α and β, the map ψβ ◦ ψ−1
α is infinitely differentiable on the domain where

it is defined.

Thus: E (with the extra structure just described) is a vector bundle over M if and

only if the ψβ ◦ ψ−1
α are all infinitely differentiable. The following proposition supplies

some further equivalent conditions:

Proposition 2.20.1. Given data as in (2.20), define τ̃α : EUα → Rk by the equation

τα(e) =
(
p(e), τ̃α(e)

)
∈ Uα ×Rk

so that

ψα(e) =
(
φα(p(e)), τ̃α(e)

)
∈ Rn ×Rk

Write Ωαβ = φα(Uα ∩ Uβ) ⊂ Rn. Then the following conditions are equivalent:

i) The construction of (2.20) makes E a vector bundle over M

ii) All of the maps

ψβ ◦ ψ−1
α : Ωαβ ×Rk → Ωβα ×Rk

are infinitely differentiable.

iii) All of the maps

τβ ◦ τ−1
α : (Uα ∩ Uβ)×Rk → (Uα ∩ Uβ)×Rk

are smooth.

iv) All of the maps

λαβ : (Uα ∩ Uβ)×Rk → Hom(Rk,Rk)
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defined by

λαβ(m)(x) = (τ̃β ◦ τ̃α−1)(m,x)

are smooth.

Proof. The equivalence of (i) and (ii) has already been noted; (ii) just says that the

ψα form an atlas for E , and once E has the structure of a manifold, the τα immediately

give it the structure of a vector bundle.

The equivalence of (ii) and (iii) is essentially the definition of smoothness; see (1.6)

and (1.6.3).

The equivalence of (iii) and (iv) is (2.19) applied to the case M = Uα∩Uβ and λ = λαβ

2C. Patching.

In this section, we will describe another way to construct vector bundles—roughly,

take a covering of M , construct trivial vector bundles over the sets in the covering, and

patch them together by the method of (2.9). None of this material will be strictly necessary

for anything that follows, so readers in a hurry can skip all of Section 2C.

Example 2.21. Let S1 be the unit circle in R2. Then S1 ×R1 (together with the

projection map to S1) is a trivial rank-1 vector bundle on S1. Think of this vector bundle

as a collection of vertical lines Em, one over each point m of the circle, and each endowed

with the structure of a one- dimensional vector space.

To construct a non-trivial vector bundle on S1, we need to attach a line to each point

on the circle in a way that looks locally like the construction of a cylinder (so that it will

be a vector bundle) and globally like something else (so that it will be non- trivial).

To do this, cover the circle with two open sets, U = S1 − {(1, 0)} and V = S1 −

{(−1, 0)}. Construct trivial vector bundles EU = U ×R1 and EV = V ×R1. Let EU |V be

the restriction of EU to U ∩ V and let EV |U be the restriction of EV to U ∩ V . Map

EU |V → EV |U
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by

(u, x) 7→
{

(u, x) if x is in the upper half-plane
(u,−x) if x is in the lower half-plane (2.21.1)

Now use (1.10) to patch EU to EV along this map and try to envision the result. You’ll

know you’ve understood this example when you can see that the resulting manifold is a

Mobius strip, with a local trivialization given by the covering {U, V } and the trivializations

of EU and EV that are inherent in their definitions.

Exercise 2.21.2 With the notation of (2.20) Let f : U ∩V → R−{0} be any smooth

map, and replace (2.20.1) with

(u, x) 7→ (u, f(u)x) (2.21.3)

and show that the vector bundle you construct must be isomorphic either to the trivial

bundle or the Mobius strip. What property of f distinguishes between the two possibilities?

Discussion 2.22. In general, a good way to construct vector bundles is to start with

a covering, construct trivial vector bundles over each piece of the covering, and then patch.

Specifically, we can take EU = U ×Rk and EV = V ×Rk.

To patch the manifolds EU and EV and get a manifold over M , we need an M -

diffeomorphism
φUV : (EU ) |V −→ (EV ) |U

‖ ‖
(U ∩ V )×Rk (U ∩ V )×Rk

In order for the trivializations of EU and EV to be compatible, φUV must induce linear

transformations (and therefore isomorphisms) on all fibers. In other words, φUV must be

an isomorphism from the trivial bundle (U ∩ V )×Rk to itself.

According to (2.19.2), choosing φUV is the same thing as choosing a smooth map

U ∩ V → GLk(R) (2.22.1)

Thus a smooth map (2.22.1) suffices to define a vector bundle over M . (Exercise:

What map of the form (2.22.1) defines the Mobius strip? Hint: the map must correspond,

via (2.19.2), to the map (2.21.1).)
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When there are more than two sets in the covering, it’s important that the various

patchings all be appropriately compatible with each other. The necessary ingredients are

formalized in the following definition:

Definition 2.23. Let M be a manifold and let {Uα} be a collection of open sets

whose union is M . For each pair of indices (α, β), let fαβ : Uα ∩ Uβ → GLk(R) be a

smooth map where GLk(R) is as in (2.19.2).

Suppose that for each triple of indices (α, β, γ), we have

fαβ ◦ fβγ = fαγ

afte r all functions have been restricted to the set Uα ∩ Uβ ∩ Uγ (so that both sides of the

equation make sense).

Then the collection of maps {fαβ} is called a cocycle with values in GLk(R).

Proposition 2.24. To every cocycle there is an associated vector bundle, constructed

by patching the various Eα = Uα ×Rk along the maps induced by the fαβ .

In detail: Consider the disjoint union of the Eα, modulo the equivalence relation

(u, x)α ∼ (u, fαβ(x))β

for u ∈ Uα ∩ Uβ and (u, x)α the copy of (u, x) that is contained in Eα. Now check that E

is a vector bundle over M .

2.25. Proposition (2.24) says that every cocycle yields a vector bundle. It is natural

to ask whether every vector bundle can be constructed in this way. The next proposition

shows that the answer is yes.

Proposition 2.25.1. Let E be a vector bundle overM and choose a local trivialization

of E as in (2.12). For each pair of indices (α, β), define a map

fαβ : Uα ∩ Uβ → GLk(R)

as follows: For m ∈ Uα ∩ Uβ define fαβ(m) to be the composition

Rk → (Uα ∩ Uβ)×Rk φ−1
α−→ E|Uα∩Uβ

φβ−→ (Uα ∩ Uβ)×Rk → Rk

x 7→ (m,x) (m,x) 7→ x
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Then {fαβ} is a cocycle, and the associated vector bundle is isomorphic to E .

2D. Sections

Definition 2.26. Let p : E →M be a vector bundle. A smooth section of E (or just

a section for short) is a smooth map s : M → E such that

p ◦ s = 1M

We write Γ(M, E) for the set of all sections s : M → E . If U ⊂ M is an open subset,

we write Γ(U, E) for Γ(U, E|U ).

Exercise 2.26.1. If E is a trivial bundle, show that every element of E is in the image

of some smooth section.

Notation 2.27. Write C(M) for the set of all smooth real-valued functions on M .

Let U be an open subset of M . For s, t ∈ Γ(U, E), define the sum s+ t by

(s+ t)(u) = s(u) + t(u)

For φ ∈ C(M) and s ∈ Γ(U, E), define the product φs ∈ Γ(U, E) by

(φs)(u) = φ(u)s(u)

Remark 2.28. The addition and multiplication rules of (2.27) satisfy the analogues

of the vector space axioms in (I.1.1). We summarize this situation by saying that Γ(U, E)

is a module over C(M).

Definition 2.29. A family of sections {s1, . . . , sk} is a global basis for E if for every

m ∈M , {s1(m), . . . , sk(m)} is a basis for Em.

Proposition 2.30. Let E be a vector bundle of rank k over M . Then E has a global

basis if and only if E is trivial.

Proof. First, suppose E has a global basis s1, . . . , sk.

Let e1 . . . ek be a basis for Rk. and map

M ×Rk → E
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by (
m,
∑

αiei

)
7→
(∑

αisi(m)
)

Check that this map is an isomorphism. (Use (I.1.17.2).)

Conversely, suppose E is trivial. Choose an isomorphism

f : M ×Rk → E

Define si : M → E by si(m) = f(m, ei), and check that the si form a global basis.

Corollary 2.30.1. Let s1, . . . , sk be a global basis for E . Then every smooth section

of E can be written uniquely as
k∑
i=1

aisi

with ai ∈ C(M).

Remarks 2.31. Let f : E → F be a map of vector bundles. Then for any open set

U , f induces a map of sections

f̃U : Γ(U, E) → Γ(U,F)
s 7→ f |E|U ◦ s

These maps “fit together” in the sense that for open sets V ⊂ U , and s ∈ Γ(U, E) we have

f̃U (s)|V = f̃V (s|V )

In (2.32) through (2.34), we introduce language to describe this situation.

Definition 2.32. Let E and F be vector bundles over M . Then a sheaf map θ from

E to F is a collection of functions

{θU : Γ(U, E)→ Γ(U,F) | U ⊂M open}

such that:

i) For φ ∈ C(M) and s, t ∈ Γ(U, E), we have

θU (φs+ t) = φθU (s) + θU (t)
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ii) For V ⊂ U open and s ∈ Γ(U, E), we have

f̃U (s)|V = f̃V (s|V )

We will use the notation

θ : Ẽ → F̃

to mean “θ is a sheaf map from E to F”.

Notation 2.33. Let E and F be vector bundles over M . We write

HomV B(E ,F)

for the set of all vector bundle maps from E to F and we write

HomSh(Ẽ , F̃)

for the set of all sheaf maps from E to F .

Definition 2.34. Given f ∈ HomV B(E ,F), we define the associated sheaf map

f̃ ∈ HomSh(Ẽ , F̃) by

f̃U (s)(m) = f(s(m))

Theorem 2.35. For each θ ∈ HomSh(Ẽ , F̃), there exists a unique f ∈ HomV B(E ,F)

such that θ = f̃ .

Proof. First, existence: Given e ∈ Em, we must give a formula for f(e) ∈ Fm.

Choose an open set U ⊂ M containing m and such that E|U is trivial. Choose a

section s ∈ Γ(U, E) such that s(m) = e. Set

f(e) = θU (s)(m) (2.35.1)

If f is well-defined, it is easily seen to be a map of vector bundles and to satisfy θ = f̃ .

So we need only check that f really is well- defined; that is, we need to check that the

right side of (2.35.1) does not depend on the choices of U and s.
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So let V ⊂ M be another open set containing m such that E|V is trivial and let

t ∈ Γ(V, E) be such that t(m) = e. (This is possible by (2.26.1). We need to show that

θU (s)(m) = θV (t)(m) (2.35.2)

Clearly we can replace both U and V with U ∩ V and replace both s and t with

their restrictions to U ∩ V without changing either side of equation (2.35.2). Thus we can

assume that U = V .

Let

{s1, . . . , sk}

be a global basis for EU , and use (2.30.1) to write

s =
k∑
i=1

aisi t =
k∑
i=1

bisi

where ai, bi : U → R. Then we have

k∑
i=1

ai(m)si(m) = s(m) = e = t(m) =
k∑
i=1

bi(m)si(m) (2.35.3)

Because the si(m) form a basis for Em, we can conclude from (2.35.3) that

ai(m) = bi(m) (2.35.4)

Now we have

θU (s)(m) = θU

(∑
aisi

)
(m)

=
(∑

aiθU (si)
)

(m) (by (2.31i) and (2.32.2))

=
∑

ai(m)θU (si)(m) (by the definitions in (2.27)

=
∑

bi(m)θU (si)(m) by (2.35.4)

=
(∑

biθU (si)
)

(m) by the definitions in (2.27)

= θU

(∑
bisi

)
(m) = (by (2.31i) and (2.31ii))

= θU (t)(m)
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as needed.

This completes the proof of existence. For uniqueness, suppose that g̃ = f̃ . Then for

any e ∈ E , we can choose an open set U containing m = p(e) such that E|U is trivial. By

(2.26.1), there exists s ∈ Γ(U, E) with s(m) = e. Now the formula in (2.32) shows that

f(e) = g(e).

Remark 2.35.5 For f, g ∈ HomV B(E ,F) and φ ∈ C(M), it is easy to check that we

have ˜(f + g) = f̃ + g̃

φ̃f = φf̃

(All additions and multiplications in these formulas are defined via pointwise addition and

multiplication in the vector spaces Fm.) We summarize this situation by saying that the

map f 7→ f̃ is a homomorphism over C(M).

Unnecessary but Possibly Enlightening Remarks 2.36. We can describe the

material of (2.32) through (2.35) in a slightly more abstract setting.

First, we make a definition: A sheaf on M consists of the following data:

i) For each open set U ⊂M , a set S(U)

ii) For each inclusion of open sets V ⊂ U ⊂M , a function ρUV : S(U)→ S(V )

These data are required to satisfy:

i) For W ⊂ V ⊂ U ⊂M all open, we have ρVW ◦ ρUV = ρUW

ii) For every open set U and for every family of open sets {Ui} whose union is U ,

the maps ρU,Ui induce a map

S(U)→ {{si}|si ∈ S(Ui) and ρUi,Ui∩Uj (si) = ρUj ,Ui∩Uj (sj) for all i, j}

We require this map to be one-one and onto.

(If we insist only on (i) and drop requirement (ii) we get the more general notion of

a presheaf .)
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For example, if E is a vector bundle, then we get the associated sheaf Ẽ by setting

Ẽ(U) = Γ(U, E) and ρUV (s) = s|V

A sheaf S is called a sheaf of modules if:

i) For each U , S(U) is a module over C(M). This means we have a rule for adding

two elements of S(U) and a rule for multiplying an element of C(U) times an

element of S(U), and these rules satisfy the vector space axioms (I.1.1).

ii) The maps ρUV are module homomorphisms. This means that ρUV (s + t) =

ρUV (s) + ρUV (t) and ρUV (φs) = φρUV (s) for all s, t ∈ S(U), and φ ∈ C(U).

For example, the sheaf associated to a vector bundle is a sheaf of modules.

If S and T are sheaves, a map

θ : S → T (2.36.1)

is a collection of functions θU : S(U)→ T (U) satisfying

ρSUV ◦ θU = θV (S) ◦ ρTUV

for all open sets V ⊂ U ⊂ M . (Here we have used superscripts S and T to distinguish

the ρ maps that are part of the definition of S from those that are part of the definition

of T .) In case S and T are sheaves of modules, we also require the θU to be module

homomorphisms.

Now let E and F be vector bundles. In (2.31) we defined the notion of a sheaf map

from E to F and denoted a typical sheaf map by the symbol

θ : Ẽ → F̃ (2.36.2)

even though the symbols Ẽ and F̃ were themselves undefined. Now that we have defined the

associated sheaves Ẽ and F̃ , and now that we have defined maps of sheaves, the notation

of (2.36.2) appears as a special case of (2.36.1). And of course, the two interpretations of

(2.36.2)— the one given in (2.31) and the one given here—are equivalent.
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3. From Functors to Vector Bundles

A functor F takes vector spaces to vector spaces and linear transformations to linear

transformations. Our goal is to extend the domain of F so that it also takes vector bundles

to vector bundles and maps of vector bundles to maps of vector bundles. It will turn out

that in order to do this in a sensible way, we need to assume that F is smooth in a sense

to be defined in 3.1. Fortunately, every functor in this book, and every functor you are

likely to encounter in your lifetime, is smooth.

3A. Smooth Functors.

Definition 3.1. Let F be a functor and let V and W be vector spaces. Think of the

rule f 7→ F (f) as a function

F : Hom(V,W )→ Hom(F (V ), F (W )) if F is covariant
F : Hom(V,W )→ Hom(F (W ), F (V )) if F is contravariant (3.1.1)

We say that F is smooth if for every V and W , (3.1.1) is a smooth map of manifolds.

Exercise 3.1.2. Show that all the covariant and contravariant functors introduced

in (I.3A) and (I.3B) are smooth.

Definition 3.2. Let F be a multifunctor. Consider the various ordinary functors

that can be constructed by fixing all but one of the indexes as in (I.3.5.1). Then F is

smooth if all of these ordinary functors are smooth.

Exercise 3.2.1. Show that all of the multifunctors of (I.3C) are smooth.

Lemma 3.3. Let E be a vector bundle over a manifold M . Then there exists a family

of open sets Uα ⊂M such that

a) M =
⋃
Uα

b) All of the Uα are coordinate patches for M

c) All of the E|Uα are trivial.

Proof. From the definition of a manifold, M =
⋃
Vβ where the Vβ are coordinate

patches.
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From the definition of a vector bundle, M =
⋃
Wγ where all of the E|Wγ

are trivial.

Now let {Uα} = {Vβ ∩Wγ}. To see that the Uα are coordinate patches use (1.5), and

to check the triviality condition use (2.7.4).

Exercise 3.3.1. Let E1, . . . , En be vector bundles over M . Show that (3.3) remains

true when c) is replaced by

c′) All of the Ei|Uα are trivial.

Definition 3.4. Let F be a smooth covariant functor (3.2) and E a vector bundle.

We will define a new vector bundle F (E).

First choose a family of sets {Uα} as in (3.3). Let {(Uα, φα)} be an atlas for M and

let {(Uα, σα}) be a local trivialization for E ; thus we have

σα : E|Uα → Uα ×Rk (3.4.1)

For each α, (3.4.1) restricts to a linear transformation

σαm : Em → Rk (3.4.2)

where we have identified {m} ×Rk with Rk via projection on the second factor. Choose

once and for all (and quite arbitrarily) an isomorphism

θ : F (Rk)→ Rd

(one exists for some d by (I.1.10)) and define ταm as the composition

ταm : F (Em)
F (σαm)−−−−−→F (Rk) θ−→Rd (3.4.3)

Now set

F (E) = {(m,x)|m ∈M and x ∈ F (Em)}

Let q : F (E)→M to be projection on the first factor and set

F (E)Uα = q−1(Uα) ⊂ F (E)
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Finally, define
τα : F (E)Uα → Uα ×Rd

(m,x) 7→ (m, ταm(x))

We would like to say that the τα give F (E) the structure of a vector bundle; the idea

is that the τα constitute a local trivialization and the compositions

F (E)Uα
τα−→ Uα ×Rd → Rn ×Rd ≈ Rn+d

(m,x) 7→ (φα(m), x)

constitute an atlas (so that F (E is a manifold).

Proposition (2.20.1) tells us exactly what it takes to make this work; the equivalence

of (2.20.1(i)) and (2.20.1(iv)) says that our system of charts is a legitimate atlas if and

only if the maps

λαβ : Uα ∩ Uβ → Hom(Rd,Rd)

given by

λαβ(m)(x) = τe
¯
tamτ

−1
αm(x)

are all smooth.

But λαβ can be written as a composition

Uαβ
καβ−→ Hom(Rk,Rk) F→ Hom(F (Rk), F (Rk)) → Hom(Rd,Rd)

f 7→ θ ◦ f ◦ θ−1
(3.4.4)

where the first map καβ (m)(x) = σβmσ
−1
αm(x). By (1.6.2) it is now enough to show that

each of the three maps in (3.4.4) is smooth.

The equivalence of (2.20.1(i)) and (2.20.1(iv)) shows that καβ is smooth, because E is

known to be a vector bundle. The map F is smooth because F is assumed to be a smooth

functor. The map f 7→ θ ◦ f ◦ θ−1 is linear and therefore smooth by (1.6.4).

Definition 3.5. Let f : E → F be a map of vector bundles, and let F be a smooth

covariant functor. We define a map of vector bundles

F (f) : F (E)→ F (F)
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by

F (f)(m,x) = (m,F (f)(x)) (3.5.1)

You should of course verify that (3.5.1) is a map of vector bundles.

Definition 3.6. Let F be a smooth contravariant functor (3.2) and let E be a vector

bundle. We define a new vector bundle F (E) exactly as in (3.4), with just one change:

Replace (3.4.3) by

ταm : F (Em)
F (σαm)−1

−−−−−→F (Rk) θ−→Rd (3.6.1)

Definition 3.7. Let f : E → F be a map of manifolds and let F be a smooth

contravariant functor. We define a map of vector bundles

F (f) : F (F)→ F (E)

by equation (3.5.1).

Definition 3.8 Let F be a smooth multifunctor (3.2) of type (p, q) where p+ q = n.

Given vector bundles E1, . . . , En, define

F (E1, . . . , En) = {(m,x)|m ∈M and x ∈ F (E1, . . . , En)}

To give F (E1, . . . , En) the structure of a vector bundle, mimic the construction of (3.4) as

follows:

Use (3.3.1) to choose an atlas for M . Let σαi : Ei → Uα×Rki be a trivialization. Let

σαim : Eim → Rdi be the restriction of σαi to the fiber. Choose once and for all an isomor-

phism θ : F (Rk1 , . . .Rkn)→ Rd. Define ταm = θ◦F (σα1m, . . . , σαpm, σ
−1
α(p+1)m, . . . , σ

−1
αnm).

Map τα : F (E1, . . . , En) → Uα ×Rd by (m,x) 7→ (φα(m), ταm(x)), and check that the τα

give F (E1, . . . , En) the structure of a vector bundle.

Definition 3.9. Let F be a smooth multifunctor of type (p, q) where p+ q = n and

suppose we are given vector bundle maps fi : Ei → Fi (i = 1, . . . p) and fi : Fi → Ei
(i = p+ 1, . . . , n). Define a vector bundle map

F (f1, . . . fn) : F (E1, . . . , En)→ F (F1, . . . ,Fn)
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by equation (3.5.1).

Examples 3.10. Given vector bundles E and F , the Hom and Tensor functors (I.3.2)

give rise to bundles Hom(E ,F) and E ⊗ F .

Applying the multifunctor T p,q of (I.5.1) with E in every slot, we get the (p, q)-tensor

bundle of E denoted T p,q(E).

The dual functor (I.3.4.3) gives rise to a bundle E∗.

Proposition 3.11. There is an isomorphism of vector bundles

E∗ → Hom(E ,M ×R)

Proof. By construction

(E∗)m = (Em)∗ = Hom(Em,R)

whereas

Hom(E ,M ×R)m = Hom(Em, (M ×R)m) = Hom(Em, {m} ×R)

Thus we can map
(E∗)m → Hom(E ,M ×R)m
fm 7→

(
em 7→ (m, fm(em))

)
Proposition 3.12. Let F1, . . . , Fn be functors (each either covariant or contravari-

ant), let G be a multifunctor of type (p, q) where p+ q = n, and let G◦F be the composed

functor (I.3.8). Then for any vector bundles E1, En, we have

(G ◦ F )(E1, . . . , En) = G(F (E1, . . . , En))

Remark 3.12.1. Proposition (3.12) makes it possible for us to assign an unambiguous

meaning to, say,

E ⊗ E∗ (3.12.1.1)

Let F1 be the identity functor, let F2 be the dual functor, and let G be the tensor prod-

uct bifunctor. Then it’s not immediately obvious whether (3.12.1.1) refers to the bundle
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G(F1(E), F2(E)) or to the bundle (G ◦ F )(E , E). But according to Proposition (3.12), the

distinction makes no difference.

3B. Hom, Sections and Duality

Recalled Notation 3.13. Recall from (2.26) that Γ(M,Hom(E ,F)) is the set of

sections of Hom(E ,F) and recall from (2.32) that HomV B(E ,F)) is the set of vector

bundle maps from E to F .

Proposition 3.14. There is a one-one correspondence

Γ(M,Hom(E ,F)) ↔ HomV B(E ,F))

ξ 7→
(
em 7→ ξ(m)(em) ∈ Fm

)
(
m 7→ fm

)
←7 f

(Here ξ and f are arbitrary elements of the left and right-hand sides, fm is as in (2.6.1),

and em is an arbitrary element of Em ⊂ E .)

We need to check that each direction of this correspondence takes smooth maps to

smooth maps. For this it is sufficient to restrict to coordinate patches on which E and F

are trivial bundles, and then the desired result reduces easily to (2.19.1).

Corollary 3.15. There is a one- one correspondence

Ω : Γ(M,Hom(E ,F))→ HomSh(Ẽ , F̃) (3.15.1)

which can be described as follows: For ξ ∈ Γ(M,Hom(E ,F)), and for U ⊂ M open, we

define
Ω(ξ)U : Γ(U, E) → Γ(U,F)

s 7→
(
m 7→ ξ(m)(s(m))

)
Proof. Combine (2.34) and (3.14).

Corollary 3.16. There is a one- one correspondence

Ω : Γ(M, E∗)→ HomSh(Ẽ , ˜M ×R)
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which can be described as follows: For ξ ∈ Γ(M, E∗) and for U ⊂M open, we have

Ω(ξ)U : Γ(U, E) → Γ(U, ˜M ×R)

s 7→
(
m 7→ (m, ξ(m)(s(m)))

) (3.16.1)

Proof. Specialize (3.15) to F = M ×R and combine with (3.11).

Remark 3.16.2. An element s of Γ(U, ˜M ×R) is of the form m
s7−→(m,φ(m)) for

some smooth map φ : U → R. Thus (3.16) is really a proposition about smooth real-valued

maps. The remainder of Section (3C) makes this reinterpretation precise.

Notation 3.17. Let E be a vector bundle over M . Let

ξ ∈ Γ(M, E∗) and s ∈ Γ(U, E)

Define a smooth map

< ξ, s >: M → R

by the formula

< ξ, s > (m) = ξ(m)(s(m))

Note that < ξ, s > is smooth because it is the composition of the right side of (3.16.1)

with projection on the second factor.

Notation 3.18. For ξ ∈ Γ(M, E∗), and for U ⊂M open, define a function

< ξ,− >: Γ(U, E) → C(U)
s 7→ < ξ, s >

(3.18.1)

Proposition 3.19. For any section ξ ∈ Γ(M, E∗), the map < ξ,− > satisfies the

following properties:

i) For s, t ∈ Γ(U, E∗) and φ ∈ C(M),

< ξ, φs+ t >= φ < ξ, s > + < ξ, t >

ii) For V ⊂ U and s ∈ Γ(U, E), let s|V be the restriction of s to V so that s|V ∈

Γ(V, E) Then

< ξ, s > |V =< ξ, s|V >∈ C(V )
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We will next show that any function satisfying these properties is of the form < ξ,− >

for some ξ ∈ Γ(M, E∗).

Theorem 3.20. Suppose we are given, for each open set U ⊂M , a function

ζU : Γ(U, E)→ C(M)

such that

i) For s, t ∈ Γ(U, E) and φ ∈ C(M),

ζU (φs+ t) = φζU (s) + ζU (t)

ii) For V ⊂ U and s ∈ Γ(U, E),

ζU (s)|V = ζV (s|V ) ∈ C(V )

Then there exists a unique section ξ ∈ Γ(M, E∗) such that for all U and for all

s ∈ Γ(U, E),

ζU (s) =< ξ, s >

Proof. For each open U , define

θU : Γ(U, E)→ Γ(U,M ×R)

by

θU (s)(m) = (m, ζU (s)(m)) (3.20.1)

The maps θU constitute a sheaf map (2.32)

θ : Ẽ → ˜(M ×R)

According to (3.16), there is a unique section ξ : M → E∗ such that for all U and for

all m,

θU (m) = (m, ξ(m)(s(m))) = (m,< ξ, s > (m)) (3.20.2)
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Now combine (3.20.1) with (3.20.2) and project on the second factor to get the theo-

rem.

Corollary 3.21. Let {ζU} be any collection of maps satisfying (3.20i) and (3.20.ii).

Let U be an open set, let s, t ∈ Γ(E , U) be sections, and let m be a point in U . Then

s(m) = t(m) implies ζU (s)(m) = ζU (t)(m)

3C. Tensor Product Bundles

The results of this section are similar in flavor to those of Section 3B.

Definition 3.22. Given sections s1, . . . sn ∈ Γ(M, E), define a section

s1 ⊗ · · · ⊗ sn : M → E ⊗ · · · ⊗ E
m 7→ s1(m)⊗ · · · ⊗ sn(m) ∈ Em ⊗ · · · ⊗ Em

Proposition 3.23 If {s1, . . . , sk} is a global basis (2.29) for E then every section

s ∈ Γ(E ⊗ . . .⊗ E)

is of the form

s =
∑

i1,...,ik

φi1,...,iks1 ⊗ · · · ⊗ sk (3.23.1)

for uniquesmooth functions φi1,...,ik : M → R.

Proof. For any m, (I.2.13) allows us to write

s(m) =
∑

i1,...,ik

φi1,...,ik(m)(si ⊗ . . .⊗ sk)(m) (3.23.2)

for some unique φi1,...,ik(m) ∈ R. Use charts to check that smoothness of the φi1,...,ik is

equivalent to the smoothness of s.

Proposition 3.24. Suppose that for every open U ⊂M , we are given a map

RU : Γ(U, E)× · · · × Γ(U, E)→ Γ(U, E)

satisfying the following properties:
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i) For φ : M → R smooth, and for any i, we have

RU (s1, . . . , φsi + ti, . . . , sk) = φRU (s1, . . . , si, . . . , sk) +RU (s1, . . . , ti, . . . , sk)

ii) For V ⊂ U open, we have

RU (s, . . . , sk)|V = RV (s1|V , . . . , sk|V )

Then there is a unique sheaf map (2.32)

R̃ :
︷ ︸
E ⊗ · · · ⊗ E → Ẽ

such that for all open sets U and all sections s1, . . . , sk ∈ Γ(U, E) we have

RU (s1, . . . , sk) = R̃U (s1 ⊗ · · · ⊗ sk)

Proof. Given a section

s ∈ Γ(U, E ⊗ · · · ⊗ E)

we must define RU (s).

If E|U has a global basis {s1, . . . , sk} write s in the form (3.23.1) and define

RU (s) =
∑

i1,...,ik

φi1,...,ikR(s1, . . . , sl) (3.24.1)

Otherwise, cover U with open subsets Vi such that E|Vi is trivial, and use (3.24.1) to

define maps RVi . For any m ∈M , choose i with m ∈ Vi and define

RU (s)(m) = RVi(s|Vi)(m)

This is independent of i and hence well- defined. Moreover, RU (s) : M → E is smooth

because its restriction to each Vi is smooth.

Corollary 3.25. Given maps satisfying (3.24i) and (3.24ii), there is a unique vector

bundle map

R : E ⊗ · · · ⊗ E → E
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such that for all U , all s1, . . . , sk and all m,

RU (s1, . . . , sk)(m) = R(s1 ⊗ · · · ⊗ sk)(m)

Proof. Use (3.24) and (2.35).

Corollary 3.26. Given maps satisfying (3.24i) and (3.24ii), given a point m ∈M, and

given sections

s1, . . . , sk, t1, . . . , tk ∈ Γ(M, E)

such that

si(m) = ti(m) ∈ TmE for all i

we can conclude that

RU (s1, . . . , sk) = RU (t1, . . . , tk)

for all open U containing m.

Corollary 3.27. Given maps satisfying (3.24i) and (3.24ii), there is a section

R ∈ Γ(M,Hom(E ⊗ · · · ⊗ E , E))

such that

RU (s1, . . . , sk)(m) = R(m)(s1(m) ≤ times · · · ⊗ sk(m)) ∈ Em

for all m ∈M , all open U containing m and all sections s1, . . . , sk.

Proof. Use (3.24) and (3.14).

�
Remark 3.27.1 We have used the same symbol R for the vector bundle map of

(3.26) and the section of (3.27).

Remark 3.28. All the results of Section 3B generalize easily to the case where

E1, . . . , Ek are (possibly distinct) vector bundles and si is a sectionof E〉.
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3D. Naturality

Definition 3.29. Let F and G be (covariant or contravariant) functors and let

φ : F ⇒ G (3.29.1)

be a natural transformation (I.4.2). Then φ induces a map of vector bundles

φ : F (E) → G(E)
(m,x) 7→ φEm(x)

(3.29.2)

Similarly, if (3.29.1) is a natural transformation of multifunctors, we get

φ : F (E1, . . . , En)→ G(E1, . . . , En) (3.22.3)

by using equation (3.29.2).

Exercise 3.29.4 Show that if φ is a natural isomorphism (I.4.3) then the induced map

(3.29.1) (or, in the case of multifunctors, (3.29.3)) is an isomorphism of vector bundles.

Remark 3.30. All the natural isomorphisms of (I.4.12) and all their consequences

(see for example I.4.13 and I.5.2.3) carry over to isomorphisms of vector bundles. Thus, for

example, if E F and G are vector bundles, we have isomorphisms E ≈ E∗∗, E ⊗F ≈ F ⊗E ,

Hom(E ⊗ F ,G) ≈ Hom(E , Hom(F ,G)), etc.

Remark 3.31. Any vector space V is isomorphic to its dual V ∗ by (I.2.6). However,

a vector bundle E is in general not isomorphic to its dual E∗. This reflects the fact that

there is no natural isomorphism V → V ∗ so the construction of (3.22) does not apply.

4. Cotangent Spaces, Tangent Spaces and Tensor Spaces

4A. Cotangents.

Definition 4.1. Let M be a manifold and let m ∈ M be a point. A real function

defined near m is a pair (U, f) where U is an open set containing m and f : U → R is a

map.

Example 4.1.1. Let (U, φ) be an n-dimensional chart on M and f : Rn → R an

infinitely differentiable map. Then (U, f ◦φ) is a real function defined near any element of

U .
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Vector Space Structure 4.2. The real functions defined near m form a vector space

under the following operations:

(U, f) + (V, g) = (U ∩ V, f |U∩V + g|U∩V )

α(U, f) = (U,αf)

Definition 4.3. Let M be a manifold and m a point in M . Let Vm be the space of

functions defined near m. We want to define a subspace Wm consisting of those functions

that “become zero near m”. More precisely, (U, f) is in Wm if there exists an open set W

with m ∈W ⊂ U such that f |W is identically zero.

The space of germs of functions at m is the space Gm = Vm/Wm.

Any germ ξ ∈ Gm can be represented by a pair (U, f) as in (4.1) and we define

ξ(m) = f(m). (Check that this is well-defined! In other words, check that if ξ is also

represented by (V, g) then f(m) = g(m).)

4.3.1. In addition to the vector space operations on germs, there is also a way to

multiply one germ by another. Represent germs ξ1 and ξ2 by pairs (U1, f1) and (U2, f2)

and define ξ1ξ2 to be the germ represented by

(U1 ∩ U2, f1|U1∩U2f2|U1∩U2)

Proposition 4.4. Let U be an open set containing m. Then any germ at m can be

represented by a pair (V, f) with V ⊂ U .

Definition 4.5. Let M be a manifold, m ∈M a point, and Gm the space of germs at

m. Let Mm ⊂ Gm be the subspace of those germs ξ such that ξ(m) = 0. Let M2
m ⊂Mm

be the space of all germs of the form

r∑
i=1

ξiρi

where the ξi and ρi are all inMm. You can think ofM2
m as the space of those germs that

“vanish to second order” at m.
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Now set T ∗mM =Mm/M2
m and call T ∗mM the cotangent space to M at m.

Exercise 4.5.1. Suppose m ∈ U ⊂ M with U open in M . Show that there is an

isomorphism of vector spaces T ∗mU ≈ T ∗mM .

Notation 4.5.2. Suppose (U, f) is a function defined near m. Then (U, f − f(m))

represents a germ in Mm and hence an element of the cotangent space T ∗mM . We denote

this element by the symbol dfm. When the point m is unambiguously fixed in the discus-

sion, we will sometimes abbreviate dfm as just df (but later on, in (6.2), the symbol df

will mean something slightly different!).

Propostion 4.6. Let f and g be functions near m ∈M .

i) If f and g differ by a constant, then df = dg. In particular, if α is a constant

function, then dα = 0.

ii) If α is a constant then d(αf) = αdf

iii) d(f + g) = df + dg

iv) d(fg) = f(m)dg + g(m)df

Proof. (i), (ii) and (iii) follow immediately from the definition.

For (iv), write

fg = (f − f(m))(g − g(m)) + f(m)g + g(m)f + f(m)g(m)

and note that the first term on the right is in M2
m so that

d(fg) = d (f(m)g + g(m)f + f(m)g(m))

which can be evaluated by (ii) and (iii).

Definition 4.7. Let φ : M → N be a map of manifolds. For each m ∈M , we define

a linear transformation

φ∗m : T ∗φ(m)N → T ∗mM

by

df 7→ d(f ◦ φ)

II-38



(Here f is a function defined on some open set U containing n ∈ N and f ◦φ is defined

on φ−1(U) ⊂M .)

Proposition 4.8. Let

M
φ→N ψ→P

be maps of manifolds. Then for each m ∈M

(ψ ◦ φ)∗m = ψ∗φ(m) ◦ φ
∗
m

Corollary 4.8.1. If φ is a diffeomorphism, then φ∗m is an isomorphism of vector

spaces.

Proof. Apply 4.8 to the case ψ = φ−1.

Exercise 4.8.2. Use (4.7) and (4.8) to define a contravariant functor that takes each

vector space V to the cotangent space T ∗0 V .

Remarks 4.8.2.1. We can generalize the result of (4.8.2) if we extend the definition of

“functor” as follows: Define a pointed vector space to be a pair (V,m) where V is a vector

space and m is an element of V . Define a pointed linear transformation φ : (V,m)→ (W,n)

to be a linear transformation φ : V → W such that φ(m) = n. Define covariant and

contravariant functors of pointed vector spaces just as we defined functors in (I.3.1) and

(I.3.3), except that the “inputs”, instead of being vector spaces and linear transformations,

are pointed vector spaces and pointed linear transformations. Then (4.7) and (4.8) allow

us to define a contravariant functor that takes the pointed vector space (V,m) to the pair

(T ∗mV, 0).

Proposition 4.9. The cotangent space T ∗0 Rn is n- dimensional.

Proof. Let xi be the ith coordinate function on Rn. The proposition follows imme-

diately from:

Claim 4.9.1. The cotangents dxi form a basis for the vector space T ∗0 Rn.

Per (I.1.5.2), the claim encompasses two subclaims.

Subclaim 4.9.1.1. The dxi span T ∗0 Rn.
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Proof. An arbitrary cotangent vector can be represented by a function f : V → R

with V open. We can replace V by any smaller open set containing m, so in particular we

may assume V is an open disk.

We must show that df is a linear combination (I.1.5.2) of the dxi.

For this, note that

f(x)− f(0) =
∫ 1

0

∂

∂t
f(tx)dt

=
∫ 1

0

n∑
i=1

∂f

∂xi
(tx)xidt

=
n∑
i=1

xi

∫ 1

0

∂f

∂xi
(tx)dt

=
n∑
i=1

xigi(x) (4.9.1.1.1)

where

gi(x) =
∫ 1

0

∂f

∂xi
(tx)dt (4.9.1.1.2)

From (4.6) and (4.9.1.1.1), we get

df =
n∑
i=1

gi(0)dxi +
n∑
i=1

xi(0)dgi (4.9.1.1.3)

where the rightmost term vanishes because xi(0) = 0.

This establishes the claim.

Remark 4.9.1.1.4. It follows from (4.9.1.1.2) that

gi(0) =
∂f

∂xi
(0)

Together with (4.9.1.1.3), this gives the useful formula

df =
n∑
i=1

∂f

∂xi
(0)dxi (4.9.1.1.5)

Subclaim 4.9.2. The dxi are linearly independent.
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Proof. Suppose
n∑
i=1

αidxi = 0

By (4.6), or (4.9.1.1.5), the left hand side is equal to

d

(
n∑
i=1

αixi

)
so that (after restricting to a suitably small neighborhood of zero) we have

n∑
i=1

αixi =
r∑
j=1

ξiρi (4.9.2.1)

where ξi(0) = ρi(0) = 0.

Differentiating each side of (4.9.2.1) with respect to xi (and using the ordinary product

rule from advanced calculus) gives

αi = 0

for all i, which is what is needed.

Exercise 4.9.3. Let V be a vector space. Show that the map

ξV : V ∗ → T ∗0 V
f 7→ df

is an isomorphism. (Here f is a typical element of V ∗, i.e. a linear map from V to R.)

Now show that the maps ξV constitute a natural transformation from the dual functor

(I.3.4.3) to the functor you defined in (4.8.2).

(Hint: Start with the case V = Rn and use (4.9.1); now use the fact that any vector

space is isomorphic to some Rn.)

Remark 4.9.3.1. It follows from (4.9.3) that T ∗0 V is naturally isomorphic to V ∗. In

the future, we will use this natural isomorphism to identify T ∗0 V with V ∗.

Remarks 4.9.3.2 Refer to (4.8.2.1) for the definition of a functor of pointed vector

spaces. We can mimic the definition of natural transformation to define a natural trans-

formation between functors of pointed vector spaces and generalize (4.9.3.1) to establish

a natural isomorphism
ξV,m : V ∗ → T ∗mV

f 7→ dfm
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for any pointed vector space (V,m).

Theorem 4.10. If m is a point in an n-dimensional manifold M , then the cotangent

space T ∗mM is n- dimensional.

Proof. Choose a coordinate patch U containing m and a chart φ : U → Rn. Adding

an appropriate constant to φ, we can assume that φ(m) = 0 ∈ Rn. Set Ω = φ(U).

Then we have

T ∗mM ≈ T ∗mU by (4.5.1)

≈ T ∗0 Ω by (4.8.1)

≈ T ∗0 Rn by (4.5.1)

and this is n-dimensional by (4.9).

Remark 4.10.1. Let (U, φ) be any chart with m ∈ U , let xi be the ith coordinate

function on Rn, and let

xφi = xi ◦ φ : U → R

Then dxφi = φ∗(dxi), so that (4.9.1), together with the proof of (4.10), shows that the dxφi
form a basis for T ∗mM .

�
Warning 4.10.1.1. This notation suppresses the dependence of dxφi on m. In

cases where m is not clearly established by context, we will write dxφi (m) instead

of dxφi .

4B. Tangents

Definition 4.11. Let M be a manifold and m a point in M . We define the tangent

space to M at m TmM to be the dual (I.2.1.5) of the cotangent space:

TmM = (T ∗mM)∗
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Remark 4.11.1. If M is an n- dimensional manifold, then TmM is an n- dimensional

vector space by (4.10) and (I.2.6).

Remark 4.11.2. The dual of the tangent space is the double dual of the cotangent

space, which, in accordance with (I.4.4.1.1), can be identified with the cotangent space

itself. Thus we write

(TmM)∗ = T ∗mM (4.11.2.1)

Intuition 4.11.3. To envision the tangent space, start with the case M = Rn. A

tangent vector is a linear map that takes cotangents df to scalars. One example of such a

map is

df 7→ ∂f

∂xi
(m)

where xi is any one of the coordinate functions on Rn.

There are n such maps, and they are linearly independent, so by (4.11.1) they span

the tangent space TmRn. Thus every tangent vector is of the form

df 7→
n∑
i=1

αi
∂f

∂xi
(m)

which is an example of a “directional derivative” operator. Thus every tangent vector is

identified with a directional derivative at m, and hence with a “direction” at m.

If M is a manifold other than a vector space, you can still essentially retain intuition.

For example, let M be the 2-sphere S2 ⊂ Rn. Let m be a point, U an open set containing

m, and f : U → R a smooth function. Then the various tangent vectors at m represent

directions in which f can be differentiated. You should visualize these directions as physical

arrows tangent to the sphere at m.

Notation and Proposition 4.12. Let U be a coordinate patch containing m and

φ : U → Rn a chart. Let dxφi ∈ T ∗mM be as in (4.10.1). For fixed i, consider the element

ξi ∈ TmM defined by

ξi(dx
φ
j ) =

{ 1 if i = j
0 otherwise
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Then by 4.11.3 it makes sense to introduce the notation

∂

∂xφi
= ξi

and by 4.10.1 together with (I.2.1.6.1) we see that{
∂

∂xφ1
, . . . ,

∂

∂xφn

}
forms a basis for TmM .

�
Remark 4.12.1. Although the cotangent vector dxφi (4.10.1) can be constructed

from knowledge of this coordinate function, the tangent vector ∂/∂xφi can not be.

The tangent vector ∂/∂xφi , depends on the coordinate functions xφj for all values

of j. (See I.2.6.1.3).

More Notation 4.13. For f a function defined near m, write

∂f

∂xφi
(m) =

∂

∂xφi
(df)

(The right side of the equation shows a tangent vector in TmM acting on a cotangent

vector in T ∗mM ; the notation hides the dependence on m.)

Proposition 4.14. Let (U, φ) be a chart on M and let f : U → R be a smooth map.

Then for every m ∈M we have

∂f

∂xφi
(m) =

∂(f ◦ φ−1)
∂xi

(φ(m))

(Note that the right hand side is an ordinary partial derivative as defined in advanced

calculus).

Proof. Because the dxφj form a basis for T ∗mM , it is enough to consider the case

f = xφj = xj ◦ φ, so that

f ◦ φ−1 = xj : Rn → R
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is just the jth coordinate map. By definition, the left side of the equation is 1 or 0

depending on whether i does or does not equal j; by a trivial computation, the right side

is the same.

Corollary 4.14.1. Let M be a manifold, (U, φ) a chart and f : U → R a smooth

map, Then for each i, the map

∂f

∂xφi
: U → R

u 7→ ∂f

∂xφi
(m)

is smooth.

Proof. The identity map is a chart on R, so by (1.6.3) it suffices to show infinite

differentiability of
∂f

∂xφi
◦ φ−1 : Rn → R (4.14.1)

By (4.14), (4.14.1.1) is just the partial derivative map

y 7→ ∂(f ◦ φ−1)
∂xi

(y)

which is infinitely differentiable because f ◦ φ−1 is.

Corollary 4.14.2. For a chart (U, φ) and a smooth map f : U → R, we have (at any

point m ∈ U)

df =
n∑
i=1

∂f

∂xφi
(m)dxφi

Proof. First replace f by f ◦φ−1 in (4.9.1.1.5). Then apply the map φ∗ (4.7) to both

sides of the resulting equation and use (4.14).

Example 4.14.3. LetM = S2 be the two-sphere, and let (Ω, φ) be the chart described

in (1.3.7.) That is, Ω ⊂ S2 is the complement of the set Z = {(x, y, z) ∈ S2|x ≤ 0, y = 0}

and φ−1 is the map

φ−1 : (−π, π)× (−π2 ,
π
2 ) → Ω

(u, v) 7→ (cos(u) cos(v), sin(u) cos(v), sin(v))
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The vectors ∂/∂uφ and ∂/∂vφ generate the tangent space TmS2.

Let x, y and z be the coordinate functions that S2 inherits from its inclusion in R3.

We will compute ∂x/∂uφ.

For this we apply (4.14) with xi replaced by u and the arbitrary function f specialized

to the function x. This gives

∂x

∂uφ
(m) =

∂ cos(u) cos(v)
∂u

(φ(m)) = − sin(uφ(m)) cos(vφ(m)) (4.14.3.1)

where uφ and vφ are the functions defined by φ(m) = (uφ(m), vφ(m)).

Thus the function ∂x/∂uφ (4.14.1) is given by

m 7→ − sin(uφ(m)) cos(vφ(m))

We abbreviate this by writing

∂x

∂uφ
= − sin(u) cos(v)

Similarly, we compute that

∂x

∂uφ
= − sin(u) cos(v)

∂x

∂vφ
= − cos(u) sin(v)

∂y

∂uφ
= cos(u) cos(v)

∂y

∂vφ
= − sin(u) sin(v)

∂z

∂uφ
= 0

∂z

∂vφ
= cos(v)

(4.14.3.2)

Definition 4.15. Let φ : M → N be a map of manifolds. Then for any point m ∈M

we define a map

φ∗m : TmM → Tφ(m)N

by

φ∗m(X)(df) = X(d(f ◦ φ))

Exercise 4.15.1. Show that φ∗m (4.15) is the result of applying the dual functor

(I.3.2.2.3) to φ∗m (4.7).
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Exercise 4.15.2. If N = Rn, show that

φ∗m(X) =
n∑
j=1

X(φ∗φ(m)(dxj))
∂

∂xj

Show in particular that

φ∗m

(
∂

∂xφi

)
=

∂

∂xi

Example 4.15.3. Consider the inclusion i : S2 ↪→ R3. Fix a point m ∈ S2. We will

compute the action of i∗m on TmS2.

First we need a coordinate patch containing m; we will assume that m is contained

in the coordinate patch Ω of Example (4.14.3) and we will continue to use the notation of

that example. Thus ∂/∂uφ and ∂/∂vφ form a basis for TmS2 and we need to compute the

action of i∗m on these vectors.

We will abuse notation by writing x, y and z both for the coordinate functions on R3

and for the coordinate functions x◦ i, y ◦ i and z ◦ i on S2. Note that x, y and z of (4.14.3)

are actually x ◦ i, y ◦ i and z ◦ i.

Next we apply (4.15.2), specializing the arbitrary map φ (which is not the same as

the chart φ that appears in this example!!) to the map i : S2 → R3. This gives

i∗m

(
∂

∂uφ

)
=

∂x

∂uφ
(m)

∂

∂x
+

∂y

∂uφ
(m)

∂

∂y
+

∂z

∂uφ
(m)

∂

∂z

= − sin(uφ(m)) cos(vφ(m))
∂

∂x
+ cos(uφ(m)) cos(vφ(m))

∂

∂y

where we have used (4.14.3.1) to get the second equation.

We abbreviate this as

i∗m

(
∂

∂uφ

)
=

∂x

∂uφ
∂

∂x
+

∂y

∂uφ
∂

∂y
+

∂z

∂uφ
∂

∂z

= − sin(uφ) cos(vφ)
∂

∂x
+ cos(uφ) cos(vφ)

∂

∂y

(4.15.3.1)

remembering that everything in sight is supposed to be evaluated at m.
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Similarly, we write

i∗m

(
∂

∂vφ

)
=

∂x

∂vφ
∂

∂x
+

∂y

∂vφ
∂

∂y
+

∂z

∂vφ
∂

∂z

= − cos(uφ) sin(vφ)
∂

∂x
− sin(uφ) sin(vφ)

∂

∂y
+ cos(vφ)

∂

∂z

(4.15.3.2)

Proposition 4.16. Let

M
φ→N ψ→P

be maps of manifolds. Then for each m ∈M

(ψ ◦ φ)∗m = φ∗ψ(m) ◦ ψ∗m

Corollary 4.16.1. If φ is a diffeomorphism, then φ∗m is an isomorphism of vector

spaces.

Exercise 4.16.2. Use (4.15) and (4.16) to define a covariant functor T0 that takes a

vector space V to the tangent space T0V . (Here V is thought of as a manifold via (1.3.5).)

Exercises 4.16.3. Given a vector space V and elements v,m ∈ V , define an element

Dv ∈ TmV by

Dv(df) = lim
t→0

f(m+ tv)
t

i) Check that Dv is well-defined; in other words, check that if df = dg then Dv(df) =

Dv(dg).

ii) Define a map
θV,m : V → TmV

v 7→ Dv

Show that θV is an isomorphism.

iii) Show that for m = 0, the maps θV,0 constitute natural isomorphism from the

identity functor to the functor T0 defined in (4.16.2).

iv) Use (iii) to show that if V and W are vector spaces, then every linear transfor-

mation T0V → T0W is of the form f∗0 for some f : V →W .
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v) If you’ve read the remarks in (4.8.2.1), generalize (iii) by replacing 0 with an

arbitrary point m ∈ V and defining naturality in the context of pointed vector

spaces.

vi) Starting with the map ξV,m of (4.9.3.2), apply the dual functor (I.3.4.3) to get an

isomorphism

ξ̃V,m : TmV → V ∗∗ ≈ V

and show that θV,m is the inverse to ξ̃V,m.

4.17. The Tangent Vector to a Curve. A parameterized curve on M is a smooth

function γ : I →M for some open interval I ⊂ R.

A parameterized curve is imbedded (or an imbedded curve) if

i) The map γ is injective and

ii) For every a ∈ I, the map γ∗a : TtI → Tγ(a)M (4.12) is injective.

For a parameterized curve γ : I →M and a point a ∈ I, the tangent vector to γ at a,

denoted γ∗(a), is defined by

γ∗(a) = γ∗a

(
∂

∂t

)
∈ Tγ(t)M

where t is the standard coordinate function on R.

For an imbedded curve, the tangent vector to γ at γ(a) ∈M is the same thing as the

tangent vector to γ at a.

(Note that for an arbitrary parameterized curve, this last definition would make no

sense, because we could have γ(a) = γ(a′) but γ∗(a) 6= γ∗(a′).)

Exercise 4.17.1. Let φ : U → Rn be a chart on M . Let f : I → Rn be an imbedded

curve such that

Image(γ̂) ⊂ Image(φ)

Set γ = φ−1 ◦ f : I →M . Show that

γ∗(a) =
n∑
i=1

∂xi ◦ f
∂t

(a)
∂

∂xφi
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where the xi are the standard coordinate functions on Rn.

In particular, for fixed i and fixed constants α1, . . . , αi−1, αi+1, . . . , αn, consider the

parameterized curve

γ : t 7→ φ−1(α1, . . . , αi−1, t, αi+1, . . . , αn) ∈M (4.17.2)

where the domain I of γ is chosen so that (4.17.2) makes sense.

Then for any a ∈ I, γ∗(a) = ∂/∂xφi (4.11.4).

4C. Tensors

Definition 4.18. Let M be a manifold, m a point in M , and TmM the tangent space

to M at m. Then the space of (p, q)-tensors at m is the vector space

T p,qm M = T p,q(TmM)

where the right-hand side is as defined in (I.5.2).

Let U be a coordinate patch containing m and φ : U → Rn a chart. Then by (4.10.1),

(4.12) and (I.2.3.3), T p,qm M has a basis consisting of all elements of the form

∂

∂xφi1
⊗ . . .⊗ ∂

∂xφip
⊗ dxφji ⊗ . . .⊗ dx

φ
jq

(4.18.1)

(This uses the identification (4.11.2.1).)

5. Cotangent Bundles, Tangent Bundles and Tensor Bundles

5A. The Cotangent Bundle.

Definition 5.1. Let M be a manifold. We will define a vector bundle called the

cotangent bundle T ∗M .

First, we define the set

T ∗M = {(m,σ)|m ∈M,σ ∈ T ∗mM}
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Map T ∗M
p→M by projection on the first factor.

We must define charts to make T ∗M a manifold and a local trivialization to make

T ∗M a vector bundle.

For each chart (U, φ) on M , and for each point u ∈ U ⊂M , let {dxφi (u)} be the basis

for T ∗mM described in (4.10.1) and (4.10.1.1). Then define a map

τφ : p−1(U) → U ×Rn(
u,
∑n
i=1 aidx

φ
i (u)

)
7→ (u, a1, . . . , an)

(5.1.1)

We want to show that as (U, φ) ranges over charts on M , the charts

ψU : p−1(U)
τφ−→ U ×Rn → Rn ×Rn ≈ Rn2

(m,x) 7→ (φ(m), x)
(5.1.2)

form an atlas, making T ∗M a manifold, and the maps (5.1.1) form a local trivialization,

making T ∗M a vector bundle.

According to (2.20.1), it suffices to prove the following claim:

Claim 5.1.1. Let (V, ρ) be another chart on M . Then the map

τφ ◦ τ−1
ρ : (U ∩ V )×Rn → (U ∩ V )×Rn (5.1.1.2)

is smooth.

Proof. We compute the map (5.1.1.2):

(u, a1, . . . , an)
τ−1
ρ7−→

(
u,

n∑
i=1

aidx
ρ
i (u)

)

=

u, n∑
i=1

n∑
j=1

ai
∂xρi

∂xφj
(u)dxφj (u)

 (by 4.14.2))

τφ7−→

(
u,

n∑
i=1

ai
∂xρi

∂xφ1
(u), . . . ,

n∑
i=1

ai
∂xρi

∂xφn
(u)

)

and this is smooth by (1.11.1) and (4.14.1).
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5B. The Tangent Bundle.

Definition 5.2. Let M be a manifold. Let TM be the dual (3.10) of the cotangent

bundle (5.1). TM is called the tangent bundle of M .

Proposition 5.3. For m ∈ M , the fiber (TM)m is equal to (or at least naturally

identified with) the tangent space TmM .

Proof. This is an immediate consequence of construction (3.10) and remark (3.10.1).

Proposition 5.4. The dual of the tangent bundle is naturally isomorphic to the

cotangent bundle.

Proof. This follows from (3.16).

5C. Tensor Bundles.

Definition 5.5. Let M be a manifold. Let T p,qM be the (p, q) tensor bundle (3.10)

of the tangent bundle (5.1). T p,qM is called the bundle of (p, q)-tensors on M .

Proposition 5.6. For m ∈ M , the fiber (T p,qM)m is equal to the tensor space

T p,qm M .

Remark 5.6.1. It should be clear that T 1,0M can be identified with the tangent

bundle T∗M and T 0,1M can be identified with the cotangent bundle T ∗M .

6. One-Forms and Vector Fields

6A. One-Forms.

Definitions 6.1. Let M be a manifold. A one-form on M is a section (2.26) of the

cotangent bundle T ∗M .

Example 6.2. Let f : M → R be a smooth function. Then for each m ∈M , we get

an element dfm ∈ T ∗mM by (4.5.2). We can define a one-form df : M → T ∗mM by

df(m) = dfm

Exercise 6.2.1. Verify that df is really a section of the cotangent bundle; in partic-
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ular, verify that it is a smooth map.

Example 6.3. Let S1 be the unit circle. Define U1 = S1 − (1, 0) and define θi :

Ui → R as in (1.3.6). For any m ∈ Ui, the function θi determines a cotangent vector

(dθi)m ∈ T ∗mM . Moreover, on the set U1 ∩ U2, θ2 − θ1 is constant, so for m ∈ U1 ∩ U2 we

have (dθ1)m = (dθ2)m. Thus we can unambiguously define a one-form

dθ : S1 → T ∗M

by

dθ(m) = (dθi)m if m ∈ Ui

6B. Vector Fields

Definition 6.4. A vector field on M is a section of the tangent bundle T∗M .

Example 6.5. Continue to use the notation of Example 6.3. In TmM , there is a

unique tangent vector (∂/∂θ)m defined by the condition(
∂

∂θ

)
m

(dθm) = 1

and we can define a vector field ∂/∂θ by(
∂

∂θ

)
(m) =

(
∂

∂θ

)
m

Defintion 6.6. A manifold is parallelizable if its tangent bundle is trivial. A trivial-

ization of T∗M is called a parallelization of M .

Proposition and Definition 6.7. An n- dimensional manifold M is parallelizable if

and only if there are n vector fields X1, . . . , Xn that are everywhere linearly independent

on M . In that case we call the Xi a global basis for M .

Example 6.8. Let S1 be the unit circle. Then ∂/∂θ (6.5) is a nowhere-zero vector

field, so by (6.6), S1 is parallelizable.

(To see that ∂/∂θ is nowhere zero, remember that (∂/∂θ)(m) is a linear map that

takes (dθ)m to 1, so it cannot be the zero map.)
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Note that there are many other nowhere-zero vector fields on S1, any one of which

suffices to demonstrate that S1 is parallelizable. Instead of the vector field (∂/∂θ)(m),

we could have considered the vector field f(m)(∂/∂θ)(m) where f is any nowhere-zero

real-valued map on S1.

Now let S2 be the two-sphere. It is possible to prove that there is not even one nowhere-

zero vector field on S2. (A nowhere-zero vector field would amount to a continuous choice

of a tangent vector at each point on the sphere; the fact that it is impossible to make

such a choice is sometimes expressed by the saying “you can’t come the hair on a ball”.)

Thus there is surely no hope of choosing two vector fields that are everywhere linearly

independent, so S2 cannot be parallelizable.

Discussion 6.9. As m ranges over the manifold M , the tangent spaces TmM are all

distinct. Any two of these tangent spaces are isomorphic as vector spaces (just because

they have the same dimension), but there is no preferred isomorphism between them and

hence no way, even informally, to identify elements of one with elements of another.

If M is parallelizable, the choice of a parallelization fills that gap. Given an isomor-

phism

φ : M ×Rn → T∗M

(in other words, given a parallelization), and given two points m,m′ ∈ M , we get a

preferred isomorphism

TmM → Tm′M

φ(m,x) 7→ φ(m′, x)

which, loosely speaking, allows us to identify TmM with Tm′M .

By construction, every point m ∈ M is contained in an open set U such that U

(thought of as a manifold in its own right) is parallelizable. So one can always find a way

to identify the tangent space at m with tangent spaces at neighboring points. But it is

important to realize that such identifications depend on the choice of parallelization; a

different parallelization yields a different set of identifications.
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6C. One-Parameter Groups.

You can think of a vector field as a way of (smoothly) placing a tangent vector at

each point of M . Once you’ve done this, you can imagine starting at an arbitrary point

of M and constructing a curve by “following the tangent vectors”, i.e. keeping the curve

tangent to the given vectors at each point. You can then start at another arbitrary point

and do the same thing, and attempt to continue until you have completely filled M with

curves. The theory of one- parameter groups describes the extent to which this is possible.

It turns out the opposite problem— starting with the curves and constructing the

vector field—is easier, so we’ll begin with that; then we’ll turn to the problem of starting

with the vector field and constructing the curves.

Definition 6.10. A one- parameter group on a manifold M is a smooth map

g : M ×R→M

such that for all m ∈M and s, t ∈ R we have

g(m, 0) = x

g(g(m, s), t) = g(m, s+ t)

Thus for each fixed x, the map

t 7→ g(m, t) (6.10.1)

is a parameterized curve (4.17) on M . The images of any two of these parameterized

curves are either identical or disjoint (prove!), so you can think of a one- parameter group

as “filling M with disjoint curves”.

Given a one-parameter group g and a point m ∈ M , let X(m) be the tangent vector

at m to the curve (6.10.1). (See (4.17) for the definition of the tangent vector to a param-

eterized curve.) Then the map m 7→ X(m) is a vector field, which we call the vector field

associated to the one- parameter group g.
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Definition 6.11. The natural question now is: Does every vector field arise from a

one-parameter group? The answer is: not quite. To make this precise, we need to define

a local one-parameter group. Let U be an open subset of M . Then a local one-parameter

group on U consists of an open interval I ⊂ R containing 0, and a map

g : U × I →M

satisfying the conditions of (6.10) whenever s, t and s+ t are all in I.

A local one-parameter group defines a family of parameterized curves just as before,

and hence defines a vector field on U via m 7→ X(m) where X(m) is the tangent vector at

m to the curve given by equation (6.10.1).

Facts 6.12. Given a vector field X and a point m ∈ M , there exists an open set U

containing m and a local one- parameter group g on U such that the restriction of X to

U is the vector field associated to g.

In other words, every point in m is surrounded by an open neighborhood that can be

“filled with curves” whose tangent vectors are those prescribed by X.

Moreover, g is unique in the following sense: if h is another local one- parameter group

defined on an open set U ′ and an open interval I ′, and if g and h both give rise to the

same vector field X on U ∩ U ′, then the restrictions of g and h to (U ∩ U ′)× (I ∩ I ′) are

equal.

To prove these facts, one first uses coordinate charts to reduce to the case M = Rn

and then uses standard existence and uniqueness theorems from the theory of differential

equations.

Definition 6.13. The parametrized curves t 7→ g(m, t) (for fixed m) are called

integral curves or flow lines for the corresponding vector field. Another way to say this is:

A parameterized curve γ : I →M is an integral curve for X if, for every m ∈ γ(I), X(m)

is the tangent vector to γ(m).

Exercise 6.14. Consider the vector field ∂
∂x on R2. Show that the integral curves

for this vector field are all straight lines.
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6D. Derivations.

Definition 6.15. Let M be a manifold and let C(M) be the vector space of all

smooth functions on M . A linear transformation ∂ : C(M)→ C(M) is called a derivation

if it satisfies

∂(fg) = f∂(g) + g∂(f)

6.16. The derivation associated to a vector field. Let X : M → TM be a

vector field. We define a derivation ∂X as follows: Given f ∈ C(M) and given m ∈M , let

dfm ∈ T ∗mM be the cotangent vector associated with f (4.5.2). Now set

∂X(f)(m) = X(m)(dfm) (6.16.1)

Abuse of Notation 6.16.2. When X is a vector field, we will sometimes use the

same symbol X to denote the derivation ∂X . Thus if f is a smooth function, X(f) is

another smooth function and it is defined by the equation

X(f)(m) = X(m)(dfm)

Proposition 6.17. Every derivation is the derivation associated to some vector field.

Proof. Given a derivation ∂ : C(M) → C(M), given a point m ∈ M and given a

cotangent vector dfm ∈ T ∗mM , set

X(m)(dfm) = ∂(f)(m) (6.17.1)

Assuming for the moment that this is well- defined (in other words, assuming that the

right-hand side of (6.17.1) is unambiguous), X(m) : T ∗mM → R is a linear transformation,

so X(m) ∈ TmM ; in other words X is a section of TM , as desired. (You should check

smoothness!)

As for well-definedness, we have to verify that if dfm = dgm then ∂(f)(m) = ∂(g)(m);

in the notation of (4.5), this means we have to check that X(m) vanishes onM2
m. In other

words, we need to know that if ξi(m) = ρi(m) = 0 for all i, then

∂

(
n∑
i=1

ξiρi

)
(m) = 0
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But this follows immediately from the linearity of ∂ and (6.16.1).

Proposition 6.18. If X and Y are vector fields, then the map

(X ◦ Y − Y ◦X) : C(M)→ C(M)

is a derivation.

(Here we are treating identifying X and Y with the corresponding derivations ∂X and

∂Y per (6.16.2), and ◦ is composition of functions.)

Proof. Linearity is immediate; we have to check (6.16.1). We have

(X ◦ Y )(fg) = X(fY (g) + gY (f))

= fX(Y (g)) +X(f)Y (g) + gX(Y (f)) +X(g)Y (f)

and similarly

(Y ◦X)(fg) = fY (X(g)) + Y (f)X(g) + gY (X(f)) + Y (g)X(f)

Subtracting gives the needed equation:

(X ◦ Y − Y ◦X)(fg) = f(X ◦ Y − Y ◦X)(g) + g(X ◦ Y − Y ◦X)(f)

�
Remark 6.18.1. Although the difference X ◦ Y − Y ◦ X is a derivation, it is

usually not the case that either X ◦ Y or Y ◦X is a derivation on its own.

Definition 6.19. Let X and Y be vector fields. By (6.18) and (6.17), we have

X ◦ Y − Y ◦X = Z

for some vector field Z. We call Z the Lie bracket of X and Y and we write

Z = [X,Y ]

II-58



Exercise 6.20. Let M = Rn and let x1, . . . , xn be the coordinates on Rn. Show that[
∂

∂xi
,
∂

∂xj

]
= 0

for every i and j.

Exercise 6.21. Let M be a manifold and let φ : M → Rn be a diffeomorphism. (For

example, (M,φ) could be a coordinate patch on a larger manifold.) Show that[
∂

∂xφi
,
∂

∂xφj

]
= 0

for every i and j.

Exercise 6.22. Let M = R2 with coordinates x and y. Let

X = cos(x2 + y2)
∂

∂x
+ sin(x2 + y2)

∂

∂y

Y = −sin(x2 + y2)
∂

∂x
+ cos(x2 + y2)

∂

∂y

Show that

[X,Y ] = −2
(
x
∂

∂x
+ y

∂

∂y

)
Exercise 6.23. Let X, Y , and Z be vector fields on M and let φ : M → R be a

smooth function. Show that

[φX + Y,Z] = φ[X,Z] + [Y,Z]− Z(φ)X

[X,φY + Z] = φ[X,Y ] + [X,Z]−X(φ)Y

Discussion 6.24. The Lie bracket measures the failure of the vector fields X and Y

to commute. Here is a geometric interpretation of that failure:

Let m ∈ M . Imagine pushing m a short distance along an integral curve of Y and

then a short distance along an integral curve of X. This gives a point m1. Alternatively,

push m a short distance along an integral curve of X and then a short distance along an

integral curve of Y . This gives a point m2. The bracket [X,Y ] measures the failure of the

points m1 and m2 to coincide. (See Figure 6.24.1.)
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m

g  (m,  )eX

Yg  (m,  )e

m
m 1
2

integral curve of X

integral curve
  of Y

integral curve
    of X

integral curve
  of Y

(6.24.1)

The value of the Lie bracket
[X,Y] at m measures the failure
of the "quadrilateral" to close.

More precisely, let gX and gY be the one-parameter groups associated with X and Y .

Let m ∈M , let ε > 0 be a small real number, and define

m1 = gX(gY (m, ε), ε)

m2 = gY (gX(m, ε), ε)

The failure of X and Y to commute is measured by the “difference” between m1 and

m2. But how can we measure this difference? What are the appropriate units? Here’s

the trick: Let f : M → R be any smooth function at all and look at f(m1) − f(m2). Of

course, this difference can have any value (because f is completely arbitrary). But we can

still talk meaningfully about how this value varies with the choice of f and with the choice

of ε (which it does, because the points m1 and m2 depend on ε). So put

F (ε) = f(m1)− f(m2)

and note for example that F (0) = 0. Then the derivative F ′(0) is a measure of how quickly

m1 and m2 spread out from each other as ε increases from zero, and this measure depends

on the choice of f via the formula

F ′(0) = [X,Y ](f)

Roughly, then, [X,Y ] accounts for that part of the infinitesimal discrepancy between

f(m1) and f(m2) that does not depend on f .
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