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We prove that a subtle but substantial bias exists in a common measure of the condi-
tional dependence of present outcomes on streaks of past outcomes in sequential data.
The magnitude of this streak selection bias generally decreases as the sequence gets
longer, but increases in streak length, and remains substantial for a range of sequence
lengths often used in empirical work. We observe that the canonical study in the in-
fluential hot hand fallacy literature, along with replications, are vulnerable to the bias.
Upon correcting for the bias, we find that the longstanding conclusions of the canonical
study are reversed.
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1. INTRODUCTION

JACK THE RESEARCHER TAKES A COIN from his pocket and decides to flip it, say, one
hundred times. As he is curious about what outcome typically follows a heads, whenever
he flips a heads he commits to writing down the outcome of the next flip on the scrap
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of paper next to him. Upon completing the one hundred flips, Jack of course expects
the proportion of heads written on the scrap of paper to be one-half. Shockingly, Jack is
wrong. For a fair coin, the expected proportion of heads is smaller than one-half.

We prove that for any finite sequence of binary data, in which each outcome of “suc-
cess” or “failure” is determined by an i.i.d. random variable, the proportion of successes
among the outcomes that immediately follow a streak of consecutive successes is expected
to be strictly less than the underlying (conditional) probability of success.1 While the mag-
nitude of this streak selection bias generally decreases as the sequence gets longer, it in-
creases in streak length, and remains substantial for a range of sequence lengths often
used in empirical work.

We observe that the canonical study in the influential hot hand fallacy literature,2  

Gilovich, Vallone, and Tversky (1985), along with replications, have mistakenly employed
a biased selection procedure that is analogous to Jack’s. Upon conducting a de-biased
analysis, we find that the longstanding conclusions of the canonical study are reversed.

To illustrate how the selection procedure that Jack uses in the opening example leads
to a bias, consider the simplest case in which he decides to flip the coin three times,
rather than 100. In this case, there are only 23 = 8 possibilities for the single three-flip se-
quence that Jack will observe. Column one of Table I lists these, with the respective flips
that Jack would record (write down) underlined for each possible sequence. Column two
gives the respective proportion of heads on recorded flips for each possible sequence. As
Jack is equally likely to encounter each sequence, one can see that the expected propor-
tion is strictly less than 1/2, and in this case is 5/12.3 Notice that because the sequence
(rather than the flip) is the primitive outcome, the weight that the (conditional) expec-
tation places on each sequence’s associated proportion is independent of the number of
recorded flips.4

In Section 2, we prove the existence of the streak selection bias for the general case,
then quantify it with a formula that we provide. In the case of streaks of length k = 1
(as in the examples discussed above), the formula admits a simple representation, and
the bias is tightly related to a form of finite sample bias that shows up in autoregressive
coefficient estimators (Yule (1926), Shaman and Stine (1988)).5 By contrast, for the more

1The expectation is conditional on the appearance of at least one streak of k consecutive heads within the
first n− 1 trials, where n≥ 3 and 1 ≤ k < n− 1.

2The hot hand fallacy has been given considerable weight as a candidate explanation for various puzzles
and behavioral anomalies identified in the domains of financial markets, sports wagering, casino gambling,
and lotteries (Arkes (2011), Avery and Chevalier (1999), Barberis and Thaler (2003), Brown and Sauer (1993),
Camerer (1989), Croson and Sundali (2005), De Bondt (1993), Long et al. (1991), Durham, Hertzel, and
Martin (2005), Galbo-Jørgensen, Suetens, and Tyran (2016), Guryan and Kearney (2008), Kahneman and
Riepe (1998), Lee and Smith (2002), Loh and Warachka (2012), Malkiel (2011), Narayanan and Manchanda
(2012), Paul and Weinbach (2005), Rabin and Vayanos (2010), Sinkey and Logan (2013), Smith, Levere, and
Kurtzman (2009), Sundali and Croson (2006), Xu and Harvey (2014), Yuan, Sun, and Siu (2014)).

3The expectation is conditional on Jack having at least one flip to record.
4By contrast, if Jack were instead to observe multiple sequences generated from the same coin, then he could

weight each proportion according to its number of recorded flips when taking the average proportion across
sequences. This would result in a relatively smaller bias that vanishes in the limit (see Appendix A.2).

5In the context of time series regression, this bias is known as the Hurwicz bias (Hurwicz (1950)), which
is exacerbated when one introduces fixed effects into a time series model with few time periods (Nerlove
(1967, 1971), Nickell (1981)). In Supplemental Material Appendix F.1 (Miller and Sanjurjo (2018)), we use a
sampling-without-replacement argument to show that in the case of k = 1, the streak selection bias, along with
finite sample bias for autocorrelation (and time series), are essentially equivalent to: (i) a form of selection
bias known in the statistics literature as Berkson’s bias, or Berkson’s paradox (Berkson (1946), Roberts et al.
(1978)), and (ii) several classic conditional probability puzzles.
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TABLE I

THE BIAS IN THE CASE OF THREE COIN FLIPS

Three-flip sequence Proportion of Hs on recorded flips

TTT –
TTH –
THT 0
HTT 0
THH 1
HTH 0
HHT 1

2
HHH 1

Expectation: 5
12

Notes: Column one lists the eight sequences that are possible for three flips of a
fair coin. The proportion of heads on the flips that immediately follow one or more
heads is reported in Column two, for each sequence that has at least one such flip. The
(conditional) expectation of the proportion, which is simply its arithmetic average across
the six equally likely sequences for which it is defined, is reported in the bottom row.

general case of k > 1, the streak selection bias is typically of larger magnitude, and the
formula does not appear to admit a simple representation.6 In this case, we provide a
formula for the bias that is numerically tractable for the sequence lengths commonly used
in the literature that we discuss.

The bias has important implications for the analysis of streak effects in the hot hand
fallacy literature. The fallacy refers to the conclusion of the seminal work of Gilovich,
Vallone, and Tversky (1985; henceforth GVT), in which the authors found that despite
the near ubiquitous belief among basketball fans and experts that there is momentum
in shooting performance (“hot hand” or “streak” shooting), the conclusion from their
statistical analyses was that momentum did not exist.7 The result has long been considered
a surprising and stark exhibit of irrational behavior, as professional players and coaches
have consistently rejected the conclusion, and its implications for their decision making.
Indeed, in the years since the seminal paper was published, a consensus has emerged that
the hot hand is a “myth,” and the associated belief a “massive and widespread cognitive
illusion” (Thaler and Sunstein (2008), Kahneman (2011)).

We find that GVT’s critical test of hot hand shooting is vulnerable to the bias for the
following simple reason: just as it is (surprisingly) incorrect to expect a fair coin flipped
100 times to yield heads half of the time on those flips that immediately follow three
consecutive heads, it is incorrect to expect a consistent 50 percent (Bernoulli i.i.d.) shooter
who has taken 100 shots to make half of the shots that immediately follow a streak of three
hits. Thus, after first replicating the original results using GVT’s: (i) raw data, (ii) biased
measures, and (iii) statistical tests, we perform a bias correction to GVT’s measures, then
repeat their statistical tests. We also run some additional (unbiased) tests as robustness

6In Supplemental Material Appendix D, we show that the bias can be decomposed into two factors: a form
of sampling-without-replacement, and a stronger bias driven by the overlapping nature of the selection pro-
cedure. In Supplemental Material Appendix F.2, we show how the bias due to the overlapping nature of the
selection procedure is related to the overlapping words paradox (Guibas and Odlyzko (1981)).

7In particular, they observed that basketball shooting is “analogous to coin tossing” and “adequately de-
scribed by a simple binomial model.” From this, they concluded that the belief in the hot hand was both “erro-
neous” and “a powerful and widely shared cognitive illusion” Gilovich, Vallone, and Tversky (1985, pp. 312–
313).
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checks. In contrast with GVT’s results, the bias-corrected reanalysis reveals significant
evidence of streak shooting, with large effect sizes.

In a brief discussion of the related literature in Section 3, we first observe that the
two replications of GVT (Avugos, Bar-Eli, Ritov, and Sher (2013a), Koehler and Con-
ley (2003)) are similarly vulnerable to the bias. We illustrate how the results of Avugos
et al. (2013a), a close replication of GVT, similarly reverse when the bias is corrected for.
Miller and Sanjurjo (2015b) showed that the results of Koehler and Conley (2003), which
has been referred to as “an ideal situation in which to study the hot hand” (Thaler and
Sunstein (2008)), reverse when an unbiased (and more powered) analysis is performed.
These results in turn agree with the unbiased analyses performed on all remaining extant
controlled shooting datasets in Miller and Sanjurjo (2014). Conservative estimates of hot
hand effect sizes are consistently moderate to large across studies.

It follows from these results that the hot hand is not a myth, and that the associated
belief is not a cognitive illusion. In addition, because researchers have: (i) accepted the
null hypothesis that players have a fixed probability of success, and (ii) treated the mere
belief in the hot hand as a cognitive illusion, the hot hand fallacy itself can be viewed as a
fallacy.8

Finally, because the bias is subtle and (initially) surprising, even for people well-versed
in probability and statistics, those unaware of it may be susceptible to being misled, or
exploited.9 On the most basic level, it is possible that a naïve observer could be convinced
that negative sequential dependence exists in an i.i.d. random process if sample size infor-
mation (i.e., the number of flips that Jack records) is obscured.10 More subtly, the bias can
be leveraged to manipulate people into believing that the outcomes of an unpredictable
process can be predicted at rates better than chance.11 Lastly, the bias can be applied in
a straightforward way to construct gambling games that appear actuarially fair, but are
not.12

8While our evidence reveals that belief in the hot hand is not a fallacy, it remains possible that those who
believe in the hot hand hold beliefs that are too strong (or too weak), or cannot accurately detect the hot hand
when it occurs. In Section 3.5, we briefly discuss existing evidence on beliefs.

9In informal conversations with researchers, and surveys of students, we have found a near-universal belief
that the sample proportion should be equal to the underlying probability, in expectation. The conviction with
which these beliefs are often held is notable, and reminiscent of the arguments that surrounded the classic
Monty Hall problem (Friedman (1998), Selvin (1975), Nalebuff (1987), Vos Savant (1990)). See Miller and
Sanjurjo (2015a) for more details on the connection between the selection bias, the Monty Hall problem, and
other conditional probability puzzles.

10In particular, Miller and Sanjurjo (2016) showed that the bias introduced here, in conjunction with a
quasi-Bayesian model of decision making under sample size neglect (Griffin and Tversky (1992), Kahneman
and Tversky (1972), Benjamin, Rabin, and Raymond (2014)), provides a novel structural candidate explanation
for the persistence of gambler’s fallacy beliefs.

11For example, suppose that a predictor observes successive realizations from a binary (or binarized) i.i.d.
random process (e.g., daily stock price movements), and is evaluated according to the success rate of her pre-
dictions over, say, three months. If the predictor is given the freedom of when to predict, then she can exceed
chance in her expected success rate simply by predicting a reversal whenever there is a streak of consecutive
outcomes of the same kind.

12A simple example is to sell the following lottery ticket for $5. A fair coin will be flipped 4 times. For each
flip, the outcome will be recorded if and only if the previous flip is a heads. If the proportion of recorded heads
is strictly greater than one-half, then the ticket pays $10; if the proportion is strictly less than one-half, then the
ticket pays $0; if the proportion is exactly equal to one-half, or if no flip is immediately preceded by a heads,
then a new sequence of 4 flips is generated. While, intuitively, it seems that the expected value of the lottery
must be $5, it is instead $4.
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2. THE STREAK SELECTION BIAS

Let X = {Xi}ni=1 be a sequence of binary random variables, with Xi = 1 a “success” and
Xi = 0 a “failure.” A natural procedure for estimating the probability of success on trial t,
conditional on trial t immediately following k consecutive successes, is to first select the
subset of trials that immediately follow k consecutive successes Ik(X) := {i : ∏i−1

j=i−kXj =
1} ⊆ {k + 1� � � � � n}, then calculate the proportion of successes on these trials.13 The fol-
lowing theorem establishes that when {Xi}ni=1 is a sequence of i.i.d. random variables, with
probability of success p and fixed length n, this procedure yields a biased estimator of the
conditional probability, P(Xt = 1|∏t−1

j=t−k Xj = 1)≡ p.

THEOREM 1: Let X = {Xi}ni=1, n ≥ 3, be a sequence of independent Bernoulli trials, each
with probability of success 0 < p < 1. Let P̂k(X) be the proportion of successes on the
subset of trials Ik(X) that immediately follow k consecutive successes, that is, P̂k(X) :=∑

i∈Ik(X) Xi/|Ik(X)|. P̂k is a biased estimator of P(Xt = 1|∏t−1
j=t−k Xj = 1) ≡ p for all k such

that 1 ≤ k≤ n− 2. In particular,

E
[
P̂k(X)|Ik(X) �= ∅]

<p� (1)

OUTLINE OF PROOF: In the proof contained in Appendix A, we begin by showing that
the conditional expectation E[P̂k(X)|Ik(X) �= ∅] is equal to the conditional probability
P(Xτ = 1|Ik(X) �= ∅), where τ is a trial drawn (uniformly) at random from the set of
selected trials Ik(X). Next, we show that for all eligible trials t ∈ Ik(X), we have that
P(Xt = 1|τ = t� Ik(X) �= ∅) ≤ p, with the inequality strict for t < n, which implies that
P(Xτ = 1|Ik(X) �= ∅) < p. The strict inequality for t < n follows from an application of
Bayes’s rule. In particular, we observe that P(Xt = 1|τ = t� Ik(X) �= ∅) = P(Xt = 1|τ =
t�

∏t−1
i=t−k Xi = 1) ∝ P(τ = t|Xt = 1�

∏t−1
i=t−k Xi = 1) × P(Xt = 1|∏t−1

i=t−k Xt = 1) = P(τ =
t|Xt = 1�

∏t−1
i=t−k Xt = 1)×p, and then argue that P(τ = t|Xt = 1�

∏t−1
i=t−k Xi = 1) < P(τ =

t|Xt = 0�
∏t−1

i=t−k Xi = 1) for t < n, which guarantees that the likelihood ratio (updating
factor) is less than 1, and yields P(Xt = 1|τ = t�

∏t−1
i=t−k Xi = 1) < p for t < n. The intuition

for why τ = t is more likely when Xt = 0 is the following: because the streak of ones
(
∏t−1

i=t−k Xi = 1) is interrupted by Xt = 0, the next k trials are necessarily excluded from
the set Ik(X). This means that when Xt = 0, there are, on average, fewer eligible trials in
Ik(X) from which to draw (relative to when Xt = 1), which implies that any single trial is
more likely to be drawn. Q.E.D.

In Supplemental Material Appendix D, we show that the downward bias can be de-
composed into two factors: (i) sampling-without-replacement: the restriction that the finite
number of available successes places on the procedure for selecting trials into Ik(X), and
(ii) streak overlap: the additional, and stronger, restriction that the arrangement of suc-
cesses and failures in the sequence places on the procedure for selecting trials into Ik(X).

Though P̂k(X) is biased, it is straightforward to show that it is a consistent estimator of
P(Xt = 1|∏t−1

j=t−k Xj = 1).14,15

13In fact, this procedure yields the maximum likelihood estimate for P(Xt = 1|∏t−1
j=t−k Xj = 1).

14See Appendix A.2 for a proof.
15It is possible to devise alternative estimators of the conditional probability that are unbiased. For exam-

ple, if the researcher were instead to control the number of selected trials by repeating the experiment until
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FIGURE 1.—The expected value of the proportion of successes on trials that immediately follow k consecu-
tive successes, P̂k(X), as a function of the total number of trials n, for different values of k and probabilities of
success p, using the formula provided in Supplemental Material Appendix E.1 (Miller and Sanjurjo (2018)).

2.1. Quantifying the Bias

In Supplemental Material Appendix E.1 (Miller and Sanjurjo (2018)) we provide a
formula that can be used to calculate E[ P̂k(X) | Ik(X) �= ∅ ] for k ≥ 1. For the special
case of k = 1 a closed form exists, which we provide in Appendix A.3. There does not
appear to be a simple representation for k> 1.

Figure 1 contains a plot of E[P̂k(X)|Ik(X) �= ∅], as a function of the number of trials in
the sequence n, and for different values of k and p. The dotted lines in the figure repre-
sent the true probability of success for p = �25� �50, and �75, respectively. The five solid
lines immediately below each dotted line represent the respective expected proportions
for each value of k= 1�2� � � � �5. Observe that while the bias does generally decrease as n
increases, it can remain substantial even for long sequences. For example, in the case of
n = 100, p = �5, and k = 5, the magnitude of the bias is �35 − �50 = −�15, and in the case
of n = 100, p= �25, and k = 3, the magnitude of the bias is �16 − �25 = −�09.16

3. APPLICATION TO THE HOT HAND FALLACY

This account explains both the formation and maintenance of the erroneous belief in the hot hand: if random
sequences are perceived as streak shooting, then no amount of exposure to such sequences will convince the

he generates exactly m trials that immediately follow k consecutive successes, then the proportion would be
unbiased. Alternatively, if the researcher were to eliminate the overlapping nature of the measure, there would
be no bias, even though the number of selected trials would still be random.

16The non-monotonicity in n of the curves presented in Figure 1 arises because, for any streak length k,
there is no bias when n= k+ 1 (because there are only two feasible sequences, which are equally likely), or in
the limit (see Appendix A.2).
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player, the coach, or the fan that the sequences are in fact random. (Gilovich, Vallone, and Tversky [GVT]
(1985, p. 132))

In their seminal paper, GVT found no evidence of hot hand shooting in their analysis
of basketball shooting data, despite the near-unanimous belief in the hot hand among
players, coaches, and fans. As a result, they concluded that belief in the hot hand is a
“powerful and widely shared cognitive illusion” (p. 313).

3.1. GVT’s Analysis

Empirical Approach

GVT’s “Analysis of Conditional Probabilities” is their main test of hot hand shoot-
ing, and provides their only measure of the magnitude of the hot hand effect. The goal
of their analysis is to determine whether a player’s hit probability is higher following a
streak of hits than it is following a streak of misses.17 To this end, GVT reported each
player i’s shooting percentage conditional on having: (1) hit the last k shots, P̂ i(hit|k hits),
and (2) missed the last k shots, P̂i(hit|k misses), for streak lengths k = 1�2�3 (Table 4,
p. 307).18 After informally comparing these shooting percentages for individual players,
GVT performed a paired t-test of whether E[P̂i(hit|k hits) − P̂i(hit|k misses)] = 0, for
k= 1�2�3.19,20

In the remainder of this section, we focus our discussion on streaks of length 3 (or
more), as in, for example, Koehler and Conley (2003) and Rao (2009b), given that:
(i) shorter streak lengths exacerbate attenuation bias due to measurement error (see
Footnote 20 and Appendix B), and (ii) people typically perceive streaks as beginning with
the third successive event (Carlson and Shu (2007)). In any case, robustness checks using
different streak lengths yield similar results (see Footnotes 28 and 31 in Section 3.3).

Data

GVT analyzed shot sequences from basketball players in three contexts: NBA field
goal data, NBA free-throw data, and a controlled shooting experiment with NCAA colle-

17GVT explicitly treated hot hand and streak shooting as synonymous (Gilovich, Vallone, and Tversky (1985,
pp. 296–297)). Miller and Sanjurjo (2014) provided an analysis that distinguishes between hot hand and cold
hand shooting, and found hot hand shooting across all extant controlled shooting data sets, but little in the
way of cold hand shooting. Thus, in the present analysis, we use the terms streakiness and hot hand shooting
interchangeably.

18We abuse our notation from Section 2 here in order to facilitate comparison with GVT’s analysis: we use
P̂i(hit|k hits) for both the random variable P̂k(X) and its realization P̂k(x). Similarly, we use P̂i(hit|k misses)
for the proportion of successes on trials that immediately follow k consecutive failures.

19Under the null hypothesis, the difference between each i’s pair of shooting percentages is drawn from a
normal distribution with mean zero.

20While GVT’s analysis of conditional probabilities provides their only measure of the magnitude of the
hot hand, they also analyzed the number of runs, serial correlation, and variation of shooting percentage in
four-shot windows. Miller and Sanjurjo (2014) showed that the runs and serial correlation tests, along with the
conditional probability test for k = 1, all amount to roughly the same test, and moreover, that they are not
sufficiently powered to identify hot hand shooting. The reason why is due to measurement error: the act of
hitting a single shot is only a weak signal of a change in a player’s underlying probability of success, which leads
to an attenuation bias in the estimate of the increase in the probability of success associated with entering the
hot state (see Appendix B and Stone (2012)’s work on measurement error when estimating autocorrelation
in ability). The test of variation in four-shot windows is even less powered than the aforementioned tests
(Wardrop (1999), Miller and Sanjurjo (2014)).
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giate players. The shooting experiment was GVT’s controlled test of hot hand shooting,
designed for the purpose of “eliminating the effects of shot selection and defensive pres-
sure” (p. 34), which makes it central to their main conclusions. Thus, we focus on these
data below when discussing the relevance of the bias to GVT’s results.21,22

In GVT’s controlled shooting experiment, 26 players from the Cornell University Mens’
(14) and Womens’ (12) basketball teams participated in an incentivized shooting task.
Each player shot 100 times at a distance from which the experimenters determined he/she
would make around 50 percent of the shots. Following each shot, the player had to change
positions along two symmetric arcs—one facing the basket from the left, and the other
from the right.

Results

In Columns 4 and 5 of Table II, we use the raw data from GVT to reproduce the shoot-
ing percentages, P̂i(hit|3 hits) and P̂i(hit|3 misses), for each of the 26 players (these are
identical to Columns 2 and 8 of Table 4 in GVT). As indicated in GVT, players on average
hit .49 when on a hit streak, versus .45 when on a miss streak. GVT’s paired t-test finds
the difference to be statistically indistinguishable from zero, and we replicate this result
(p= �49).

3.2. The Bias in GVT’s Analysis

While GVT’s null hypothesis that E[P̂i(hit|k hits) − P̂i(hit|k misses)] = 0 seems in-
tuitively correct for a consistent shooter with a fixed probability of success pi (i.i.d.
Bernoulli), Theorem 1 reveals a flaw in this reasoning. In particular, we have established
that P̂ i(hit|k hits) is expected to be less than pi, and P̂i(hit|k misses) greater than pi

(by symmetry). In fact, in Appendix A.4, we show that the difference P̂ i(hit|k hits) −

21From the statistical point of view, the in-game field goal data that GVT analyzed (Study 2: 76ers, 1980–
81 season: 9 players, 48 home games) are not ideal for the study of hot hand shooting for reasons that are
unrelated to the bias. The most notable concern with in-game field goal data is that the opposing team has
incentive to make costly strategic adjustments to mitigate the impact of the “hot” player (Dixit and Nalebuff
(1991, p. 17)). This concern has been emphasized by researchers in the hot hand literature (Aharoni and Sarig
(2011), Green and Zwiebel (2017)), and is not merely theoretical, as it has a strong empirical basis. While GVT
observed that a shooter’s field goal percentage is lower after consecutive successes, subsequent studies have
shown that with even partial controls for defensive pressure (and shot location), this effect is eliminated (Rao
(2009a), Bocskocsky, Ezekowitz, and Stein (2014)). Further, evidence of specific forms of strategic adjustment
has been documented (Aharoni and Sarig (2011), Bocskocsky, Ezekowitz, and Stein (2014)). See Miller and
Sanjurjo (2014) for further details.

22The in-game free throw data that GVT analyzed (Study 3: Celtics, 1980–81, 1981–82 seasons: 9 players),
while arguably controlled, are not ideal for the study of hot hand shooting for a number of reasons: (i) hitting
the first shot in a pair of isolated shots is not typically regarded by fans and players as hot hand shooting
(Koehler and Conley (2003)), presumably due to the high prior probability of success (≈ �75), (ii) hitting a
single shot is a weak signal of a player’s underlying state, which can lead to severe measurement error (Stone
(2012), Arkes (2013)), (iii) it is vulnerable to an omitted variable bias, as free throw pairs are relatively rare, and
shots must be aggregated across games and seasons in order to have sufficient sample size (Miller and Sanjurjo
(2014)). In any event, subsequent studies of free throw data have found evidence that is inconsistent with
the conclusions that GVT drew from the Celtics’ data (Wardrop (1995), Arkes (2010), Yaari and Eisenmann
(2011), Aharoni and Sarig (2011), Goldman and Rao (2012), Miller and Sanjurjo (2014)).



SURPRISED BY THE HOT HAND FALLACY? 2027

TABLE II

SHOOTING PERFORMANCE

D̂3 := P̂(hit|3 hits)− P̂(hit|3 misses)

Player # shots P̂(hit) P̂(hit|3 hits) P̂(hit|3 misses) GVT est. bias adj.

Males
1 100 .54 �50 (12) �44 (9) �06 �14
2 100 .35 �00 (3) �43 (28) −�43 −�33
3 100 .60 �60 (25) �67 (6) −�07 �02
4 90 .40 �33 (3) �47 (15) −�13 −�03
5 100 .42 �33 (6) �75 (12) −�42 −�33
6 100 .57 �65 (23) �25 (12) �40 �48
7 75 .56 �65 (17) �29 (7) �36 �47
8 50 .50 �57 (7) �50 (6) �07 �24
9 100 .54 �83 (30) �35 (20) �48 �56

10 100 .60 �57 (21) �57 (7) �00 �09
11 100 .58 �62 (21) �57 (7) �05 �14
12 100 .44 �43 (7) �41 (17) �02 �10
13 100 .61 �50 (18) �40 (5) �10 �19
14 100 .59 �60 (20) �50 (6) �10 �19

Females
1 100 .48 �33 (9) �67 (9) −�33 −�25
2 100 .34 �40 (5) �43 (28) −�03 �07
3 100 .39 �50 (8) �36 (25) �14 �23
4 100 .32 �33 (3) �27 (30) �07 �17
5 100 .36 �20 (5) �22 (27) −�02 �08
6 100 .46 �29 (7) �54 (11) −�26 −�18
7 100 .41 �62 (13) �32 (25) �30 �39
8 100 .53 �73 (15) �67 (9) �07 �15
9 100 .45 �50 (8) �46 (13) �04 �12
10 100 .46 �71 (14) �32 (19) �40 �48
11 100 .53 �39 (13) �50 (10) −�12 −�04
12 100 .25 �− (0) �32 (37)

Average .47 �49 �45 �03 �13

Notes: Columns 4 and 5 reproduce the shooting percentages and number of shots that appear in Table 4, Columns 2 and 8, from
Gilovich, Vallone, and Tversky (1985) (note: 3 hits (misses) includes streaks of 3, 4, 5, etc.). Column 6 reports the difference between
the proportions (using the raw data), and Column 7 adjusts for the bias (mean correction), based on each player’s shooting percentage
(probability in this case) and number of shots.

P̂i(hit|k misses) is not only expected to be negative, but that its magnitude is more than
double the bias in either of the respective proportions.23

Under GVT’s design target of each player taking n = 100 shots and making half
(p = �5) of them, we use the results from Section 2 and Appendix A.4 to find that the
expected difference (and the strength of the bias) is −8 percentage points.24 Therefore,
the difference between the average proportion of +4 percentage points observed by GVT
is actually +12 percentage points higher than the difference that would be expected from

23That the difference is expected to be negative does not follow immediately from Theorem 1, as the set of
sequences for which the difference is well-defined is a strict subset of the set corresponding to either of the
respective proportions. Nevertheless, the reasoning of the proof is similar. See Theorem 3 of Appendix A.4.

24See Figure 4 in Appendix A.4 for the bias in the difference as n�p, and k vary.
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a Bernoulli i.i.d. shooter. Thus, the bias has long disguised evidence in GVT’s data that
may well indicate hot hand shooting.

3.3. A Bias-Corrected Statistical Analysis of GVT

A straightforward way to adjust for the bias in GVT’s analysis is simply to shift the
difference for each shooter by the amount of the corresponding bias, then repeat their
paired t-test. While this test yields a statistically significant result (p < �05), the paired
t-test limits statistical power because it reduces each player’s performance to a single
number, ignoring the number of shots that the player attempted in each category, that is,
“3 hits” and “3 misses.” In addition, adjusting for the bias based on the assumption that
p = �5 assumes that GVT’s design target was met precisely.

As a result, for each player, we again compute the bias under the null hypothesis that
trials are i.i.d. Bernoulli (i.e., “consistent” shooting) but now with a probability of success
equal to the player’s observed shooting percentage (Column 3 of Table II), and using the
number of shots taken in each category to inform our standard errors. With this approach,
the average difference goes from +3 to a considerable +13 percentage points (p < �01,
S.E. = 4�7pp).25,26 To put the magnitude of +13 percentage points into perspective, the
difference between the median three point shooter and the top three point shooter in the
2015–2016 NBA season was 12 percentage points.27 Further, this is a conservative estimate
because, in practice, the data generating processes (i.e., shooters) clearly differ from i.i.d.
Bernoulli trials, and the bias becomes much larger under various models of hot hand
shooting because of measurement error (see Appendix B).

GVT also informally discussed the heterogeneity across players, and asserted that most
players shot relatively better when on a streak of misses than when on a streak of hits. By
contrast, Figure 2 shows that once the bias correction is made to the differences, 19 of
the 25 players directionally exhibit hot hand shooting, which is itself significant (p < �01,
binomial test).28 Further, as indicated by the confidence intervals, t-tests reveal that five of
the players exhibit statistically significant evidence of hot hand shooting (p< �05, t-test),
which, for a set of 25 independent tests, is itself significant (p< �01, binomial test).

25The standard error is computed based on the assumption of independence across the 2600 trials, and
normality. In particular, defining player i’s difference D̂i

k := P̂i(hit|k hits) − P̂ i(hit|k misses), the variance
satisfies V̂ar(D̂i

k) = V̂ar(P̂i(hit|k hits)) + V̂ar(P̂i(hit|k misses)) for each player i. Simulations reveal that the
associated (1 − α) × 100% confidence intervals with radius zα/2 × V̂ar(D̄k)

1/2 (where the mean difference is
given by D̄k := (1/n)

∑n
i=1 D̂

i
k) have the appropriate coverage—that is, (1 − α/2)× 100% of the time the true

difference is greater than D̄k − zα/2 × V̂ar(D̄k)
1/2, for both Bernoulli trials and the positive feedback model

discussed in Appendix B.
26For an alternative approach that involves pooling shots across players, and yields similar results, see Ap-

pendix C.
27ESPN, “NBA Player 3-Point Shooting Statistics—2015–16.” http://www.espn.com/nba/statistics/player/_/

stat/3-points [accessed September 24, 2016].
28Repeating the tests for longer (k = 4) or shorter (k = 2) streak lengths yields similar results that are

consistent with the attenuation bias in estimated effect sizes discussed in Footnote 20. In particular, if we
instead define a streak as beginning with 4 consecutive hits, which is a stronger signal of hot hand shooting, then
the average bias-adjusted difference in proportions is 10 percentage points (p = �07, S.E. = 6�9, one-sided test),
and four players exhibit statistically significant hot hand shooting (p< �05), which is itself significant (p< �01,
binomial test). On the other hand, if we define a streak as beginning with 2 consecutive hits, which is a weaker
signal of hot hand shooting, then the average bias-adjusted difference in proportions is 5�4 percentage points
(p< �05, S.E. = 3, one-sided test), and four players exhibit statistically significant hot hand shooting (p< �05),
which is itself significant (p< �01, binomial test).

http://www.espn.com/nba/statistics/player/_/stat/3-points
http://www.espn.com/nba/statistics/player/_/stat/3-points
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FIGURE 2.—The bias-corrected difference D̂i
3 = P̂i(hit|3 hits)− P̂i(hit|3 misses) for each player, under the

assumption that his/her probability of success is equal to his/her overall shooting percentage.

Nonparametric Robustness Test

As a robustness check, we perform permutation tests, which are (by construction) in-
vulnerable to the bias. The null hypothesis for a permutation test is that a player is a
consistent shooter, that is, has an i.i.d. fixed (unknown) probability of success. The first
step to test for streak shooting in player i is to observe his/her shot sequence and com-
pute the difference in proportions, P̂i(hit|k hits)− P̂i(hit|k misses). The second step is to
compute this difference for each unique rearrangement of the observed sequence; each of
these permutations is equally likely because player i’s probability of success is fixed under
the null hypothesis.29 The set of unique differences computed in the second step, along
with their associated relative frequencies, constitutes the exact sampling distribution of
the difference under the null hypothesis (conditional on the observed number of hits).
This distribution can then be used for statistical testing (see Appendix C.2 for details).
The distribution is negative-skewed, and can be represented by histograms such as the
one shown in Figure 3, which provides the exact distribution for a player who has hit 50
out of 100 shots.

Results of the permutation tests agree with those of the bias-corrected tests reported
above. In particular, the average difference across shooters indicates hot hand shooting
with a similar level of significance (p < �01).30 Also as before, five individual players ex-
hibit significant hot hand shooting (p< �01, binomial test).31

29Thus, the permutation procedure directly implements GVT’s idea of comparing a “player’s perfor-
mance. . . to a sequence of hits and misses generated by tossing a coin” (Gilovich, Vallone, and Tversky (1985,
p. 296)).

30The procedure in this pooled test involves stratifying the permutations by player. In particular, we conduct
a test of the average of the standardized difference, where, for each player, the difference is standardized by
shifting its mean and scaling its variance under H0. In this case, H0: P(success on trial t for player i) = pi for
all t� i.

31As in Footnote 28, the results of the permutation test are robust to varying streak length k.
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FIGURE 3.—The histogram and kernel density plot of the (exact) discrete probability distribution of
P̂i(hit|k hits) − P̂ i(hit|k misses), a single player i with n = 100 and n1 = 50, using a variant of the formula
for the distribution provided in Supplemental Material Appendix E.2 (Miller and Sanjurjo (2018)).

3.4. The Hot Hand (and Bias) in Other Controlled and Semi-Controlled Studies

A close replication of GVT’s controlled shooting experiment is found in Avugos et al.
(2013a), a study that mimics GVT’s design and analysis, but with olympian rather than
collegiate players, and fewer shots (n = 40) per player. From the authors’ Table 1 (p. 6),
one can derive the average p̂(hit|3 hits) and p̂(hit|3 misses) across players, which are
roughly .52 and .54, respectively, yielding an average difference in shooting percentages
of −2 percentage points.32 However, Figure 4 in Appendix A.4 shows that the strength
of the bias for n = 40 shots and p = �5 (the design target) is −�20. Thus, once the bias is
corrected for in this small sample, the average difference across shooters becomes roughly
+18 percentage points.33

Koehler and Conley (2003) tested for the hot hand in the NBA three point shoot-
ing contest, which has been described as an ideal setting in which to study the hot hand
(Thaler and Sunstein (2008)). The authors found no evidence of hot hand shooting in
their analysis of four years of data. However, as in GVT and Avugos et al. (2013a), the
conditional probability tests that the authors conducted are vulnerable to the bias. By con-
trast, Miller and Sanjurjo (2015b) collected 28 years of data, which yield 33 players that
have taken at least 100 shots; using this data set, we find that the average bias-corrected

32We could not analyze the raw data because the authors declined to provide it to us. The data that represent
a close replication of GVT are from the betting game phase. Using Table I, we have p̂(hit|3 hits)= (�56+ �52)/2
and p̂(hit|3 misses) = (�54 + �49)/2, which is the average of the shooting percentage of Group A in Phase 1
with that of Group B from Phase 2.

33The authors also had another treatment, in which they had shooters rate, before each shot, from 0–100%
on a certainty scale whether they would hit the next shot. If we repeat the analysis on the data from this treat-
ment, then the average p̂(hit|3 hits) and p̂(hit|3 misses) across players are roughly .56 and .65, respectively,
yielding an average difference of −9 percentage points, and a bias-adjusted difference of +11 percentage
points.
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difference across players is +8 percentage points (p < �01).34 Further, 8 of the 33 play-
ers exhibit significant hot hand shooting (p < �05), which itself is statistically significant
(p< �001, binomial test).

The only other controlled shooting studies that we are aware of are Jagacinski, Newell,
and Isaac (1979) and Miller and Sanjurjo (2014).35,36 Both studies have few shooters (6
and 8, respectively) but many shots across multiple shooting sessions for each player (540
and 900+ shots, respectively). The bias-adjusted average differences in the studies are
+7 and +4 percentage points, respectively. In addition, Miller and Sanjurjo (2014) found
substantial and persistent evidence of hot hand shooting in individual players.37

Thus, once the bias is accounted for, conservative estimates of hot hand effect sizes
across all extant controlled and semi-controlled shooting studies are consistently moder-
ate to large.38

3.5. Belief in the Hot Hand

The results of our reanalysis of GVT’s data lead us to a conclusion that is the op-
posite of theirs: belief in the hot hand is not a cognitive illusion. Nevertheless, it re-
mains possible, perhaps even likely, that professional players and coaches sometimes in-
fer the presence of a hot hand when it does not exist. Similarly, even when in the pres-
ence of the hot hand, players may overestimate its influence and respond too strongly
to it. By contrast, a hot hand might also go undetected, or be underestimated (Stone
and Arkes (2018)). These questions are important because understanding the extent to
which decision makers’ beliefs and behavior do not correspond to the actual degree of
hot hand shooting could have considerable implications for decision-making more gener-
ally.

While GVT’s main conclusion was of a binary nature, that is, based on the question of
whether belief in the hot hand is either fallacious or not, they explored hot hand beliefs
via a survey of player and coach beliefs, and an incentivized betting task with the Cornell
players. In the survey, they found that the near-universal beliefs in the hot hand do not
accord with the lack of hot hand shooting evidence that resulted from their analysis of the
shooting data, and in the betting task they found that players were incapable of predicting
upcoming shot outcomes successfully, which suggests that even if there were a hot hand,
it could not be detected successfully.

34Miller and Sanjurjo (2015b) also implemented the unbiased permutation test procedure of Section 3.3.
35The one exception is a controlled shooting study that involved a single shooter: Wardrop (1999). After

personal communication with the shooter, who conducted the study herself (recording her own shots), we
viewed it as not having sufficient control to warrant analysis.

36We thank Tom Gilovich for bringing the study of Jagacinski, Newell, and Isaac to our attention. It had
gone uncited in the hot hand literature until Miller and Sanjurjo (2014).

37See Avugos et al. (2013b) for a meta-analysis of the hot hand, which includes sports besides basketball.
Tversky and Gilovich (1989) argued that evidence for the hot hand in other sports is not relevant to their main
conclusion because so long as the hot hand does not exist in basketball, then the perception of the hot hand by
fans, players, and coaches must necessarily be a cognitive illusion (see also Alter and Oppenheimer (2006)).

38The magnitudes of all estimated effect sizes are conservative for two reasons: (i) if a player’s probabil-
ity of success is not driven merely by feedback from previous shots, but also by other time-varying player-
(and environment-) specific factors, then the act of hitting consecutive shots will serve as only a noisy proxy
of the hot state, resulting in measurement error, and an attenuation bias in the estimate (see Appendix B),
and (ii) if the effect of consecutive successes on subsequent success is heterogeneous in magnitude (and
sign) across players, then an average measure will underestimate how strong the effect can be in certain play-
ers.
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However, in light of the results presented in the present paper, subjects’ responses in
GVT’s unincentivized survey are actually qualitatively consistent with the evidence pre-
sented above.39 More substantively, GVT’s statistical analysis of betting data has recently
been shown to be considerably underpowered, as the authors conducted many separate
individual bettor level tests rather than pooling the data across bettors (Miller and San-
jurjo (2017b)). In addition, GVT misinterpreted their measures of bettors’ ability to pre-
dict. In light of these limitations, Miller and Sanjurjo (2017b) reanalyzed GVT’s betting
data, and found that players on average shoot around +7 percentage points higher when
bettors have predicted that the shot will be a hit, rather than a miss (p < �001). This in-
crease is comparable in magnitude to an NBA shooter going from slightly above average
to elite in three point percentage.40

Miller and Sanjurjo (2014) presented complementary evidence on beliefs, in which
semi-professional players rank their teammates’ respective increases in shooting percent-
age when on a streak of three hits (relative to their base rates) in a shooting experiment
that the rankers do not observe. Players’ rankings are found to be highly correlated with
their teammates’ actual increases in shooting percentage in this out-of-sample test, yield-
ing an average correlation of −�60 (p< �0001, where 1 is the rank of the shooter with the
perceived largest percentage point increase).

In sum, while it remains possible that professional players’ and coaches’ hot hand beliefs
are poorly calibrated, this claim is not clearly supported by the existing body of evidence.

4. CONCLUSION

We prove the existence of, and quantify, a novel form of selection bias that counter-
intuitively arises in some particularly simple analyses of sequential data. A key implica-
tion of the bias is that the empirical approach of the canonical hot hand fallacy paper,
and its replications, are incorrect. Upon correcting for the bias, we find that the data
that had previously been interpreted as demonstrating that belief in the hot hand is a
fallacy, instead provide substantial evidence that it is not a fallacy to believe in the hot
hand.

APPENDIX A: PROOFS RELATING TO SECTION 2

A.1. Proof of Theorem 1 (Section 2)

Define F := {x ∈ {0�1}n : Ik(x) �= ∅} to be the sample space of sequences for which
P̂k(X) is well defined. The probability distribution over F is given by P(A|F) := P(A ∩
F)/P(F) for A ⊆ {0�1}n, where P(X = x)= p

∑n
i=1 xi(1 −p)n−∑n

i=1 xi .
Let the random variable Xτ represent the outcome of the randomly “drawn” trial τ,

which is selected as a result of the two-stage procedure that: (i) draws a sequence x at
random from F , according to the distribution P(X = x|F), and (ii) draws a trial τ at
random from {k + 1� � � � � n}, according to the distribution P(τ = t|X = x). Let τ be a
uniform draw from the trials in sequence X that immediately follow k consecutive suc-
cesses, that is, for x ∈ F , P(τ = t|X = x) = 1/|Ik(x)| for t ∈ Ik(x), and P(τ = t|X = x) = 0
for t ∈ Ik(x)C ∩ {k + 1� � � � � n}.41 It follows that the unconditional probability distribu-

39See Appendix B of Miller and Sanjurjo (2017b) for details.
40ESPN, “NBA Player 3-Point Shooting Statistics—2015–16.” http://www.espn.com/nba/statistics/player/_/

stat/3-points [accessed September 24, 2016].
41For x ∈ FC , no trial is drawn, which we can represent as P(τ = 1|X = x) = 1 (for example).

http://www.espn.com/nba/statistics/player/_/stat/3-points
http://www.espn.com/nba/statistics/player/_/stat/3-points
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tion of τ over all trials that can possibly follow k consecutive successes is given by
P(τ = t|F) = ∑

x∈F P(τ = t|X = x�F)P(X = x|F), for t ∈ {k + 1� � � � � n}. The probability
that this randomly drawn trial is a success, P(Xτ = 1|F), must be equal to the expected
proportion, E[P̂k(X)|F].42

Note that P(Xτ = 1|F) = ∑n

t=k+1 P(Xt = 1|τ = t�F)P(τ = t|F), and P(τ = t|F) > 0 for
t ∈ {k + 1� � � � � n}. Below, we demonstrate that P(Xt = 1|τ = t�F) < p when t < n, and
that P(Xt = 1|τ = n�F)= p, which, taken together, guarantee that P(Xτ = 1|F) < p.

First we observe that P(Xt = 1|τ = t�F)= P(Xt = 1|τ = t�Ft), where Ft := {x ∈ {0�1}n :∏t−1
i=t−kxi = 1}. Bayes’s rule then yields

P(Xt = 1|τ = t�Ft)

P(Xt = 0|τ = t�Ft)
= P(τ = t|Xt = 1�Ft)

P(τ = t|Xt = 0�Ft)

P(Xt = 1|Ft)

P(Xt = 0|Ft)

= P(τ = t|Xt = 1�Ft)

P(τ = t|Xt = 0�Ft)

p

1 −p
�

Therefore, for the case of t ∈ {k + 1� � � � � n − 1}, in order to show that P(Xt = 1|τ =
t�F) = P(Xt = 1|τ = t�Ft) < p it suffices to show that P(τ = t|Xt = 1�Ft) < P(τ = t|Xt =
0�Ft), which follows below:

P(τ = t|Xt = 0�Ft)

=
∑

x∈Ft :xt=0

P(τ = t|Xt = 0�X = x�Ft)P(X = x|Xt = 0�Ft)

=
∑

x∈Ft :xt=0

P(τ = t|Xt = 0�X−t = x−t � Ft)P(X−t = x−t|Xt = 0�Ft) (2)

>
∑

x∈Ft :xt=0

P(τ = t|Xt = 1�X−t = x−t � Ft)P(X−t = x−t|Xt = 1�Ft) (3)

=
∑

x∈Ft :xt=1

P(τ = t|Xt = 1�X = x�Ft)P(X = x|Xt = 1�Ft)

= P(τ = t|Xt = 1�Ft)�

where in (2), given x, we define x−t := (x1� � � � � xt−1�xt+1� � � � � xn). To obtain the inequality
in (3), we observe that: (i) P(X−t = x−t|Xt = 0�Ft) = P(X−t = x−t |Xt = 1�Ft) because X is
a sequence of i.i.d. Bernoulli trials, and (ii) P(τ = t|Xt = 1�X−t = x−t � Ft) < P(τ = t|Xt =
0�X−t = x−t � Ft) because τ is drawn at random (uniformly) from the set Ik(x), which con-
tains at least one more element (trial t + 1) if xt = 1 rather than xt = 0.

For the case of t = n, we follow the above steps until (3), at which point an equality now
emerges as Xn = 1 no longer yields an additional trial from which to draw, because trial n
is terminal. This implies that P(τ = n|Xn = 1�Fn) = P(τ = n|Xn = 0�Fn).

42The identity follows by the law of total probability, with the key observation that P̂k(x) = ∑
t∈Ik(x) xt ·

1
|Ik(x)| = ∑n

t=k+1 P(Xt = 1|τ = t�X = x�F)P(τ = t|X = x�F).
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Taking these two facts together: (i) P(Xt = 1|τ = t�F) < p, for k + 1 ≤ t < n, and (ii)
P(Xn = 1|τ = n�F)= p, it immediately follows that P(Xτ = 1|F) < p.43 Q.E.D.

A.2. Asymptotic Unbiasedness

Proof that the Proportion is Asymptotically Unbiased

To demonstrate that P̂k(X) is a consistent estimator of P(Xt = 1|∏t−1
j=t−k Xj = 1), first

define Yk�i := ∏i

j=i−k+1 Xj for i ≥ k. With this, P̂k(X) = ∑n

i=k+1 Yk+1�i/
∑n−1

i=k Yk�i. Note that
each of the respective sequences {Yk�i}, {Yk+1�i} is asymptotically uncorrelated (k fixed).
Therefore, their time averages converge to their respective means almost surely, that is,
1/(n− k)

∑n−1
i=k Yk�i

a�s�−→ E[Yk�i] = pk, and 1/(n− k)
∑n

i=k+1 Yk+1�i
a�s�−→ E[Yk+1�i] = pk+1.44

The continuous mapping theorem implies that P̂k(X)
a�s�−→ p = P(Xt = 1|∏t−1

j=t−k Xj = 1),
which in turn implies consistency. Q.E.D.

Proof that Weighted Proportions are Asymptotically Unbiased

In order to prove the assertion made in Footnote 4 that the weighted average propor-
tion over multiple realized sequences is a consistent estimator of P(Xt = 1|∏t−1

j=t−k Xj = 1),
we first define Yk�i := ∏i

j=i−k+1 Xj for i ≥ k, just as we did in the previous proof. Then, we
note that: (i) the number of trials that follow k consecutive successes in the weighted
proportion taken over T sequences is given by

∑T

t=1 Zk�t , where Zk�t = ∑nt−1
i=n(t−1)+k Yk�i,

and (ii) the number of successes on these trials is given by
∑T

t=1 Zk+1�t , where Zk+1�t =∑nt

i=n(t−1)+k+1 Yk+1�i. Because Zk�t are i.i.d. with E[Zk�t] = (n − k)pk, it follows that
1/T

∑T

t=1 Zk�t
a�s�−→ E[Zk�t] = (n − k)pk; similarly, 1/T

∑T

t=1 Zk+1�t
a�s�−→ E[Zk+1�t] = (n −

k)pk+1. Then, the continuous mapping theorem yields the desired consistency of the
weighted proportion (after sequence T ), that is,

∑T

t=1 Zk+1�t/
∑T

t=1 Zk�t
a�s�−→ p= P(Xt = 1|∏t−1

j=t−k Xj = 1). Q.E.D.

A.3. Formula for the Expected Proportion (Special Case of k = 1)

The following lemma shows that the expected proportion P̂1(X), conditional on a
known number of successes N1(X) = n1, satisfies the sampling-without-replacement for-
mula, which, for any given trial, is less than the probability of success P(Xi|N1(X)= n1)=
n1
n

.

LEMMA 1: Let n > 1. Then

E
[
P̂1(X)|I1(X) �= ∅�N1(X)= n1

] = n1 − 1
n− 1

(4)

for 0 ≤ n1 ≤ n.

43Note that the proof does not require that the Bernoulli trials be identically distributed. Instead, we could
allow the probability distribution to vary, with P(Xi = 1) = pi for i = 1� � � � � n, in which case our result would
be that P(Xτ = 1|F) < E[pτ|F].

44See Definition 3.55 and Theorem 3.57 from White (1999).
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PROOF: As in the proof of Theorem 1, let τ be drawn at random from I1(X), which
is nonempty when N1(X) = n1 ≥ 2 (the result is trivial when n1 = 1). In order to ease
notation, we let probability P(·) represent the conditional probability P(·|N1(X) = n1),
which is defined over the subsets of {x ∈ {0�1}n :N1(x)= n1}:

E
[
P̂1(X)|N1(X)= n1� I1(X) �= ∅]

(5)
= P(Xτ = 1)

= P(Xτ = 1|τ < n)P(τ < n)+ P(Xn = 1|τ = n)P(τ = n)

=
n−1∑
t=2

P(Xt = 1|τ = t)
1

n− 1
+ P(Xn = 1|τ = n)

1
n− 1

(6)

= n− 1
n− 2

(
n1

n
− 1

n− 1

)
n− 2
n− 1

+ n1

n

1
n− 1

(7)

= n1 − 1
n− 1

�

In (5), equality follows by an argument analogous to that provided in the proof of
Theorem 1. In (6), equality follows from the fact that P(τ = t) = 1/(n − 1) for all
t ∈ {2�3� � � � � n}.45 In (7), equality follows from using an application of Bayes’s rule to
derive P(Xt = 1|τ = t), which satisfies

P(Xt = 1|τ = t) =

⎧⎪⎨
⎪⎩
n− 1
n− 2

(
n1

n
− 1

n− 1

)
for t = 2� � � � � n− 1�

n1

n
for t = n�

(8)

In particular,

P(Xt = 1|τ = t)

= P(τ = t|Xt−1 = 1�Xt = 1)P(Xt−1 = 1|Xt = 1)P(Xt = 1)
P(τ = t)

(9)

= P(τ = t|Xt−1 = 1�Xt = 1)
n1(n1 − 1)

n
�

where for all t, P(Xt−1 = 1|Xt = 1) = (n1 − 1)/(n − 1), which is the likelihood that re-
lates to sampling-without-replacement. For t < n, P(τ = t|Xt−1 = 1�Xt = 1), which is the
likelihood that relates to the arrangement of successes and failures, satisfies

P(τ = t|Xt−1 = 1�Xt = 1) = E

[
1
M

∣∣∣∣Xt−1 = 1�Xt = 1
]

=
∑

x∈{0�1}
E

[
1
M

∣∣∣∣Xt−1 = 1�Xt = 1�Xn = x

]

45Note that P(τ = t) = ∑
x:N1(x)=n1

P(τ = t|X = x)P(X = x) = ∑
x:N1(x)=n1�xt−1=1

1
n1−xn

1
( n
n1
) = 1

( n
n1
) [( n−2

n1−1

)
1
n1

+(
n−2
n1−2

)
1

n1−1 ] = 1
n−1 .
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× P(Xn = x|Xt−1 = 1�Xt = 1)

= 1
n1

n0

n− 2
+ 1

n1 − 1
n1 − 2
n− 2

= 1
n− 2

(
n0

n1
+ n1 − 2

n1 − 1

)
�

where M := |I1(X)|, that is, M = n1 − Xn. In the case that t = n, clearly P(τ = n|Xn−1 =
1�Xn = 1)= 1

n1−1 . Q.E.D.

Formulae for Expected Value of the Proportion

The conditional expectation in Lemma 1 can be combined with P(N1(X) = n1|I1(X) �=
∅) to express the expected proportion in terms of just n and p.46

THEOREM 2: Let n > 2 and 0 <p< 1. Then

E
[
P̂1(X)|I1(X) �= ∅] =

[
p− 1 − (1 −p)n

n

]
n

n− 1
1 − (1 −p)n−1 <p� (10)

PROOF: We first observe that in light of Lemma 1, Equation (10) can be written as
follows:

E
[
P̂1(X)|I1(X) �= ∅] =E

[
E

[
P̂1(X)|I1(X) �= ∅�N1(X) = n1

]]
=E

[
N1(x)− 1
n− 1

∣∣∣∣I1(X) �= ∅
]
�

The expected value can then be computed using the binomial distribution, which yields

E

[
N1(x)− 1
n− 1

∣∣∣∣I1(X) �= ∅
]

= C

n∑
n1=1

pn1(1 −p)n−n1

[(
n
n1

)
−U(n�n1)

]
· n1 − 1
n− 1

=

n∑
n1=2

(
n

n1

)
pn1(1 −p)n−n1

n1 − 1
n− 1

1 − (1 −p)n −p(1 −p)n−1

=
1

n− 1
[(
np− np(1 −p)n−1

) − (
1 − (1 −p)n − np(1 −p)n−1

)]
1 − (1 −p)n −p(1 −p)n−1

=

[
p− 1 − (1 −p)n

n

]
n

n− 1
1 − (1 −p)n−1 �

46In a comment written about this paper, Rinott and Bar-Hillel (2015) provided an alternative proof for this
theorem.
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where U(n�n1) is the number of sequences with n1 successes for which the proportion is
undefined, and C is the constant that normalizes the total probability to 1. The second
line follows because U1(n�n1) = 0 for n1 > 1, U1(n�0) = U1(n�1) = 1, and C = 1/[1 −
(1 −p)n −p(1 −p)n−1].

Finally, by letting q := 1 − p, it is straightforward to show that the bias in P̂1(X) is
negative:

E
[
P̂1(X)−p|I1(X) �= ∅] =

[
p− 1 − qn

n

]
n

n− 1
1 − qn−1 −p

= (n− 1)
(
qn−1 − qn

) − (
q− qn

)
(n− 1)

(
1 − qn−1

)
< 0�

The inequality follows from f (x) = qx being strictly decreasing and convex, which implies
that q− qn > (n− 1)(qn−1 − qn). Q.E.D.

A.4. Expected Difference in Proportions

Let Dk be the difference in the probability of success when comparing trials that im-
mediately follow k consecutive successes with trials that immediately follow k consecu-
tive failures. That is, Dk := P(Xt = 1|∏t−1

j=t−k Xj = 1) − P(Xt = 1|∏t−1
j=t−k(1 − Xj) = 1).

An estimator of Dk that is used in the hot hand fallacy literature (see Section 3) is
D̂k(x) := P̂k(x) − [1 − Q̂k(X)], where Q̂k(X) is the proportion of failures on the subset
of trials that immediately follow k consecutive failures, Jk(X) := {j : ∏j−1

i=j−k(1 − Xi) =
1} ⊆ {k+ 1� � � � � n}.

A.4.1. Proof of the Bias in the Difference

We extend the proof of Theorem 1 to show that D̂k(X) is a biased estimator of Dk.
Recall that Ik(X) is the subset of trials that immediately follow k consecutive successes,
that is, Ik(X) := {i : ∏i−1

j=i−kXj = 1} ⊆ {k+1� � � � � n}. Analogously, let Jk(X) be the subset of
trials that immediately follow k consecutive failures, that is, Jk(X) := {j : ∏j−1

i=j−k(1−Xi) =
1} ⊆ {k+ 1� � � � � n}.

THEOREM 3: Let X = {Xi}ni=1, n ≥ 3, be a sequence of independent Bernoulli trials, each
with probability of success 0 < p < 1. Let P̂k(X) be the proportion of successes on the sub-
set of trials Ik(X) that immediately follow k consecutive successes, and Q̂k(X) be the pro-
portion of failures on the subset of trials Jk(X) that immediately follow k consecutive fail-
ures. D̂k(x) := P̂k(x) − [1 − Q̂k(X)] is a biased estimator of Dk := P(Xt = 1|∏t−1

j=t−k Xj =
1)− P(Xt = 1|∏t−1

j=t−k(1 −Xj)= 1)≡ 0 for all k such that 1 ≤ k< n/2. In particular,

E
[
D̂k(X)|Ik(X) �= ∅� Jk(X) �= ∅]

< 0� (11)
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PROOF: Following the notation used in the proof of Theorem 1, let F := {x ∈ {0�1}n :
Ik(x) �= ∅} and G := {x ∈ {0�1}n : Jk(x) �= ∅}. We will show the following:

E
[
D̂k(x)|F�G

] =E
[
P̂k(X)|F�G] +E

[
Q̂k(X)|F�G] − 1

= P(Xτ = 1|F�G)+ P(Xσ = 0|F�G)− 1 (12)

<p+ (1 −p)− 1 (13)

= 0�

where in (12), as in the proof of Theorem 1, τ is a random draw from Ik(x) and σ is an
analogous random draw from Jk(x). In particular, we will demonstrate that the inequal-
ity in (13) holds by showing that P(Xτ = 1|F�G) < p, which, by symmetry, implies that
P(Xσ = 0|F�G) < 1 −p.

To show that P(Xτ = 1|F�G) < p, we use an approach similar to that presented in
the proof of Theorem 1. In particular, note that P(Xτ = 1|F�G) = ∑n

t=k+1 P(Xt = 1|τ =
t�F�G)P(τ = t|F�G), and P(τ = t|F�G) > 0 for t ∈ {k + 1� � � � � n}. In what follows, we
demonstrate that P(Xt = 1|τ = t�F�G) < p when t < n, and that P(Xt = 1|τ = n�F�G)=
p, which, taken together, guarantee that P(Xτ = 1|F�G) < p.

First we observe that P(Xt = 1|τ = t�F�G) = P(Xt = 1|τ = t�Ft�G), where Ft := {x ∈
{0�1}n : ∏t−1

i=t−kxi = 1}. Bayes’s rule then yields

P(Xt = 1|τ = t�Ft�G)

P(Xt = 0|τ = t�Ft�G)
= P(τ = t�G|Xt = 1�Ft)

P(τ = t�G|Xt = 0�Ft)

P(Xt = 1|Ft)

P(Xt = 0|Ft)

= P(τ = t�G|Xt = 1�Ft)

P(τ = t�G|Xt = 0�Ft)

p

1 −p
�

Therefore, for the case of t ∈ {k + 1� � � � � n − 1}, in order to show that P(Xt = 1|τ =
t�F�G) = P(Xt = 1|τ = t�Ft�G) < p it suffices to show that P(τ = t�G|Xt = 1�Ft) <
P(τ = t�G|Xt = 0�Ft), which follows below:

P(τ = t�G|Xt = 0�Ft)

=
∑

x∈Ft∩G:
xt=0

P(τ = t�X = x|Xt = 0�Ft)

=
∑

x∈Ft∩G:
xt=0

(1�x−t )∈Ft∩G

P(τ = t�X = x|Xt = 0�Ft) (14)

+
∑

x∈Ft∩G:
xt=0

(1�x−t )/∈Ft∩G

P(τ = t�X = x|Xt = 0�Ft)

≥
∑

x∈Ft∩G:
xt=0

(1�x−t )∈Ft∩G

P(τ = t�X = x|Xt = 0�Ft)

=
∑

x∈Ft∩G:
xt=0

(1�x−t )∈Ft∩G

P(τ = t|X = x�Xt = 0�Ft)P(X = x|Xt = 0�Ft)
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=
∑

x∈Ft∩G:
xt=0

(1�x−t )∈Ft∩G

P(τ = t|Xt = 0�X−t = x−t � Ft)P(X−t = x−t |Xt = 0�Ft)

>
∑

x∈Ft∩G:
xt=0

(1�x−t )∈Ft∩G

P(τ = t|Xt = 1�X−t = x−t � Ft)P(X−t = x−t |Xt = 1�Ft) (15)

=
∑

x∈Ft∩G:
xt=1

(1�x−t )∈Ft∩G

P(τ = t|X = x�Xt = 1�Ft)P(X = x|Xt = 1�Ft)

=
∑

x∈Ft∩G:
xt=1

P(τ = t�X = x|Xt = 1�Ft)

= P(τ = t�G|Xt = 1�Ft)�

where in (14), given x, we define x−t := (x1� � � � � xt−1�xt+1� � � � � xn), and (b�x−t) :=
(x1� � � � � xt−1� b�xt+1� � � � � xn).47 The inequality in (15) follows for the same reason as the
inequality in line (3) of Theorem 1. In particular, P(X−t = x−t |Xt = 0�Ft) = P(X−t =
x−t |Xt = 1�Ft) because X is a sequence of i.i.d. Bernoulli trials, and P(τ = t|Xt = 1�X−t =
x−t � Ft) < P(τ = t|Xt = 0�X−t = x−t � Ft) because τ is drawn at random (uniformly) from
the set Ik(x), which contains at least one more element (trial t + 1) if xt = 1 rather than
xt = 0.

For the case of t = n, we follow the above steps until (15), at which point an equality
now emerges, as Xn = 1 no longer yields an additional trial from which to draw, because
trial n is terminal. This implies that P(τ = n|Xn = 1�Fn�G)= P(τ = n|Xn = 0�Fn�G).

Taking these two facts together: (i) P(Xt = 1|τ = t�F�G) < p, for k + 1 ≤ t < n, and
(ii) P(Xn = 1|τ = n�F�G)= p, it immediately follows that P(Xτ = 1|F�G) < p. Q.E.D.

A.4.2. Formula for the Expected Difference in Proportions (Special Case of k= 1)

In the case of k = 1, the expected difference in proportions admits a simple represen-
tation that is independent of p.

THEOREM 4: Let D̂1(X) := P̂1(X)− (1 − Q̂1(X)). If n > 2 and 0 <p< 1, then

E
[
D̂1(X)|I1(X) �= ∅� J1(X) �= ∅] = − 1

n− 1
�

PROOF: The method of proof is to first show that if n > 2 and 1 ≤ n1 ≤ n− 1, then

E
[
D̂1(X)|N1(X)= n1� I1(X) �= ∅� J1(X) �= ∅] = − 1

n− 1
�

which leaves us just one step from the desired result.
First, consider the case that 1 < n1 < n − 1. In this case, D̂1(x) := P̂1(x) − (1 − Q̂1(x))

is defined for all sequences. Therefore, by the linearity of the expectation, and applying

47Note that the second sum will have no terms for t ≥ n− k.
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Lemma 1 to Q̂1(X) (by symmetry), we have

E
[
D̂1(X)|N1(X)= n1

] =E
[
P̂1(X)|N1(X)= n1

] −E(1 − Q̂1(X)|N1(X)= n1]

=n1 − 1
n− 1

−
(

1 − n0 − 1
n− 1

)

= − 1
n− 1

�

If n1 = 1, then D̂1 is defined for all sequences that do not have a 1 in the final position;
there are n−1 such sequences. The sequence with the 1 in the first position yields D̂1 = 0,
while the other n − 2 sequences yield D̂1 = −1/(n − 2). Therefore, E[D̂1(X)|N1(X) =
1� I1(X) �= ∅� J1(X) �= ∅] = −1/(n− 1).

Now consider the case of n1 = n− 1. The argument for this case is analogous, with D̂1

undefined for the sequence with the zero in the last position, equal to 0 for the sequence
with the zero in the first position, and equal to −1/(n− 2) for all other sequences.

Finally, that the conditional expectation is independent of N1(x) implies that E[D1(X)|
I1(X) �= ∅� J1(X) �= ∅] is independent of p, yielding the result. Q.E.D.

A.4.3. Quantifying the Bias for the Difference

Figure 4 contains a plot of E[D̂k(X)|Ik(X) �= ∅� Jk(X) �= ∅] as a function of the number
of trials n, and for k = 1�2, and 3. Because the bias is dependent on p when k > 1, the
difference is plotted for various values of p. These expected differences are obtained
from the formula provided in Supplemental Material Appendix E.2 (Miller and Sanjurjo
(2018)). The magnitude of the bias is simply the absolute value of the expected difference.

FIGURE 4.—The expected difference in the proportion of successes, as a function of n, three values of k,
and various probabilities of success p, using the formula from Supplemental Material Appendix E.2.
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As with the bias in the proportion (see Figure 1), the bias in the difference is substantial
even when n is relatively large.

APPENDIX B

B.1. Size of the Bias When the DGP Is Hot Hand/Streak Shooting

In Section 3.3, the correction to GVT’s estimate of the hot hand effect (and test statis-
tic) is based on the magnitude of the bias under the assumption that the shooter has
a fixed probability of success (Bernoulli process). However, if the underlying data gen-
erating process (DGP) instead represents hot hand or streak shooting, then the size of
the bias changes. While many DGPs can produce hot hand shooting, arguably the most
natural are those discussed in Gilovich, Vallone, and Tversky (1985), as they reflect lay
conceptions of the hot hand and streak shooting. While GVT took no particular stance
on which lay definition is most appropriate, they did identify hot hand and streak shooting
with: (i) “non-stationarity” (the zone, flow, in the groove, in rhythm), and (ii) “positive as-
sociation” (success breeds success). We label (i) as a regime shift model, and interpret it as
capturing the idea that a player’s probability of success may increase due to some factor
that is unrelated to previous outcomes, so unobservable to the econometrician. This can
be modeled naturally as a hidden Markov chain over the player’s (hidden) ability state. We
label (ii) as a positive feedback model, because it can be interpreted as capturing the idea
that positive feedback from a player’s previous shot outcomes can affect his/her subse-
quent probability of success. This can be modeled naturally as an autoregressive process,
or equivalently as a Markov chain over shot outcomes.48

In Figure 5, we plot the bias in the estimator of the difference in probability of suc-
cess when on a hit streak rather than miss streak, D̂3, for three alternative DGPs, each of
which admits the Bernoulli process as a special case.49 The first panel corresponds to the

FIGURE 5.—The bias for three types of hot hand and streak shooting data generating processes (DGPs),
where FG% is the expected overall field goal percentage from the DGP, and d represents the change in the
player’s underlying probability of success. When d = 0, each model reduces to a Bernoulli process. Therefore,
the black line represents the bias in a Bernoulli proccess (n= 100 trials, k= 3).

48A positive feedback model need not be stationary.
49Each point is the output of a simulation with 10,000 repetitions of 100 trials from the DGP.
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“regime shift” DGP in which the difference in the probability of success between the “hot”
state and the “normal” state is given by d (where d = 0 represents Bernoulli shooting),50

the second panel corresponds to the “positive feedback” DGP in which hitting (missing)
three shots in a row increases (decreases) the probability of success by d/2, and the third
panel corresponds to the “positive feedback (for hits)” DGP in which positive feedback
operates for hits only, making the probability of success increase by d whenever three hits
in a row occurs. Within each panel of the figure, the bias, which is the expected difference
between D̂3, the estimator of the shift in the probability of success, and d, the true shift in
the probability of success, is depicted as a function of the expected overall shooting per-
centages (from 40 percent to 60 percent), for four true shifts in the underlying probability
(d ∈ {�1� �2� �3� �4}).51

Observe that when the true DGP is a player with a hot hand, the bias is typically
more severe, or far more severe, than the bias associated with a Bernoulli DGP. In par-
ticular, the bias in the “regime shift” model is particularly severe, which arises from
two sources: (i) the bias discussed in Section 2, and (ii) an attenuation bias, due to
measurement error, as hitting three shots in a row is an imperfect proxy for the “hot
state.”52 The bias in the positive feedback DGP is uniformly below the bias for a
Bernoulli shooter. For the DGP in which positive feedback operates only for hits, the
bias is stronger than that of Bernoulli shooters for expected shooting percentages below
50 percent (as in GVT’s data), and slightly less strong for shooting percentage above
50 percent. As the true DGP is likely some combination of a regime shift and posi-
tive feedback, it is reasonable to conclude that the empirical approach in Section 3.3
should be expected to (greatly) understate the true magnitude of any underlying hot
hand.

The intuition for why the introduction of regime shift elements increases the strength
of the bias so considerably is that if a player’s probability of success is not driven merely by
feedback from previous shots, but also by other time-varying player- (and environment-)
specific factors, then the act of hitting consecutive shots will serve as only a noisy proxy of
the hot state, resulting in measurement error, and an attenuation bias in the estimate. This
type of measurement error is similar to what Stone (2012) uncovered in the relationship

50In particular, let Q be the hidden Markov chain over the “normal” state (n) and the “hot” state (h), where
the probability of success in the normal state is given by pn, and the probability of success in the hot state is
given by ph, with the shift in probability of success given by d := ph −pn

Q :=
(
qnn qnh

qhn qhh

)
�

where qnn represents the probability of staying in the “normal” state, and qnh represents the probability of
transitioning from the “normal” to the “hot” state, etc. Letting π = (πn�πh) be the stationary distribution, we
find that the magnitude of the bias is not very sensitive to variation in the stationary distribution and transition
probabilities within a plausible range (i.e., πh ∈ [�05� �2] and qhh ∈ (�8� �98)), while it varies greatly with the
difference in probabilities d and the overall expected shooting percentage p = pn + πhd. In the graph, for
each d and p (FG%), we average across values for the stationary distribution (πh) and transition probability
(qhh).

51Results are similar if the DGP instead has negative feedback, that is, d ∈ {−�1�−�2�−�3�−�4}.
52In practice, observers may have more information than the econometrician (e.g., shooting mechanics,

perceived confidence, or lack thereof, etc.), so may be subject to less measurement error.
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between autocorrelation in outcomes and autocorrelation in ability when considering a
DGP that contains autocorrelation in ability.

APPENDIX C: ADDITIONAL ANALYSES, AND DETAILS FOR SECTION 3

C.1. An Alternative (Pooled) Analysis of Shooting Data

An alternative approach to testing for streak shooting across players is to pool all shots
from the “3 hits” and “3 misses” categories (discarding the rest), then use a linear prob-
ability model to estimate the effect of a shot falling in the “3-hits” category. If the imple-
mentation of GVT’s design met the goal of placing each player in a position in which his
or her probability of success is .5, then this approach would be analogous to re-weighting
the under-weighted coin flips in Table I of Section 1. With 2515 shots, the bias is mini-
mal and the estimate in this case is +17 percentage points (p< �01, S.E. = 3�7). Because
GVT’s design goal is difficult to implement in practice, this approach will introduce an up-
ward bias, due to aggregation, if the probability of success varies across players. Adding
fixed effects in a regression will control for this aggregation bias, but strengthens the se-
lection bias related to streaks.53 As a result, a bias correction is necessary. In this case,
the estimated effect is +13.9 percentage points (p < �01, S.E. = 5�8), which has larger
standard errors because the heteroscedasticity under the assumption of different player
probabilities necessitates the use of robust variants (in this case, Bell and McCaffrey stan-
dard errors; see Imbens and Kolesar (2016)). The magnitude of the estimated effect has
a different interpretation than the one given for the estimate of the average difference
across players; it should be thought of as the hot hand effect for the average shot rather
than the average player. This interpretation arises because pooling shots across players
generates an unbalanced panel, which results in the estimate placing greater weight on
the players that have taken more shots. As such, in the extreme it is even possible that
the majority of players exhibit a tendency to have fewer streaks than expected by chance,
yet, because they have generated relatively few observations, their data become diluted
by many observations from a single streak shooter.

C.2. Details on the Hypothesis Testing With the Permutation Test Procedure

Let X ∈ {0�1}n be a sequence of shot outcomes from some player, i. The null hy-
pothesis is that the shots are i.i.d. with P(Xt = 1) = pi. This implies that, conditional
on the number of hits, N1(X) = n1, each rearrangement is equally likely. Considering
only sequences for which both P̂i(hit|k hits) and P̂i(hit|k misses) are defined, the hot
hand hypothesis predicts that the difference P̂ i(hit|k hits) − P̂ i(hit|k misses) will be sig-
nificantly larger than what one would expect by chance. Let D̂k(X) be this difference
for sequence X. For an observed sequence x, with N1(x) = n1 hits, to test the null
hypothesis at the α level, one simply checks if D̂k(x) ≥ cα�n1 , where the critical value
cα�n1 is defined as the smallest c such that P(Dk(X) ≥ c|H0�N1(X) = n1) ≤ α, and the
distribution P(Dk(X) ≥ c|H0�N1(X) = n1) is generated using the formula provided in
Supplemental Material Appendix E.2 (Miller and Sanjurjo (2018)). For the quantity

53In this panel regression framework, the bias from introducing fixed effects is an example of an incidental
parameter problem of Neyman and Scott (1948), and is essentially equivalent to that discussed in Nerlove
(1971) and Nickell (1981), and itself is closely related to the bias in estimates of autocorrelation in time series
mentioned in the Introduction.
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P(Dk(X) ≥ c|H0�N1(X) = n1), it may be the case that, for some c∗, it is strictly greater
than α for c ≤ c∗, and equal to 0 for c > c∗. In this case, for any sequence with N1(X) = n1,
one cannot reject H0 at an α level of significance. From the ex ante perspective, a test of
the hot hand at the α level of significance consists of a family of such critical values {cα�n1}.
It follows immediately that P(reject|H0) ≤ α because P(reject|H0) = ∑n

n1=1 P(Dk(X) ≥
cα�n1 |H0�N1(X) = n1)P(N1(X) = n1|H0) ≤ α. Last, for any arbitrary test statistic T(X),
the fact that the distribution of X is exchangeable conditional on N1(X) = n1 means that
P(T(X) ≥ c|H0�N1(X) = n1) can be approximated to appropriate precision with Monte
Carlo permutations of the sequence x.
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APPENDIX D: ONLINE

D.1. Streak Selection Bias and a Quantitative Comparison to Sampling Without
Replacement

WE SHOW HOW THE DOWNWARD BIAS in the estimator P̂k(X) is driven by two sources
of selection bias. One is related to sampling-without-replacement, and the other to the
overlapping nature of streaks.

Recall from the proof of Theorem 1 that E[P̂k(X)|Ik(X) �= ∅] = P(Xτ = 1|Ik(X) �= ∅),
where τ is drawn (uniformly) at random from Ik(X). Because any sequence X ∈ {0�1}n,
such that Ik(X) �= ∅, that a researcher encounters will contain a certain number of suc-
cesses N1(X) = n1 and failures n0 := n − n1, for n1 = k� � � � � n we can write P(Xτ =
1|Ik(X) �= ∅) = ∑n

n1=k P(Xτ = 1|N1(X) = n1� Ik(X) �= ∅)P(N1(X) = n1|Ik(X) �= ∅). To ex-
plore the nature of the downward bias, we discuss why P(Xτ = 1|N1(X) = n1� Ik(X)) <
P(Xt = 1|N1(X) = n1) = n1/n, that is, why the probability that a randomly drawn trial
from Ik(X) is less than the overall proportion of successes in the sequence p̂ = n1/n, that
is, the prior probability that a trial is a success when it is drawn (uniformly) at random
from 1� � � � � n under the knowledge that N1(X)= n1.58

Suppose that the researcher were to know the overall proportion of successes p̂ = n1/n
in the sequence. Now, consider the following two ways of learning that trial t immediately
follows k consecutive successes: (i) a trial τN , drawn uniformly at random from {k +
1� � � � � n}, is revealed to be trial τN = t, and preceded by k consecutive successes, or (ii)
a trial τI , drawn (uniformly) at random from Ik(X) = {i : ∏t−1

i=t−k Xi = 1} ⊆ {k+ 1� � � � � n},
is revealed to be trial τI = t. In each case, the prior probability of success is P(Xt = 1) =
n1/n, which can be equivalently represented with the odds ratio P(Xt = 1)/P(Xt = 0) =
n1/n0, indicates the n1/n0 : 1 prior odds in favor of Xt = 1 (relative to Xt = 0).

In the first case, the probability distribution for τN is given by P(τN = t) = 1/(n − k)
for all t ∈ {k+ 1� � � � � n}, and is independent of X. Upon finding out that τN = t, one then
learns that

∏t−1
t−k Xi = 1. As a result, the posterior odds can be represented by a sampling-

Joshua B. Miller: joshua.benjamin.miller@gmail.com
Adam Sanjurjo: sanjurjo@ua.es
58Note that P(N1(X) = n1|Ik(X) �= ∅) > P(N1(X)= n1) because the exclusion of sequences without a streak

of k successes in the first n− 1 trials biases upwards the number of successes. We do not consider this upward
bias here as Theorem 1 shows that the downward biases predominate.
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without-replacement formula, via Bayes’s rule:

P(Xt = 1|τN = t)

P(Xt = 0|τN = t)
=

P

(
Xt = 1�

t−1∏
t−k

Xi = 1
∣∣∣∣ τN = t

)

P

(
Xt = 0�
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t−k

Xi = 1
∣∣∣∣ τN = t

)

=
P

(
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Xi = 1

)
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(
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)
P

(
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Xi = 1
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)
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Xi = 1
∣∣∣∣Xt = 0

) P(Xt = 1)
P(Xt = 0)

=
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(
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Xi = 1
∣∣∣∣Xt = 1

)

P

(
t−1∏
t−k

Xi = 1
∣∣∣∣Xt = 0

) P(Xt = 1)
P(Xt = 0)

=
n1 − 1
n− 1

× · · · × n1 − k

n− k
n1

n− 1
× · · · × n1 − k+ 1

n− k

n1

n0

= n1 − k

n1

n1

n0

= n1 − k

n0
�

Observe that the prior odds in favor of success are attenuated by the likelihood ratio n1−k

n1

of producing k consecutive successes given either hypothetical state of the world: Xt = 1
or Xt = 0, respectively. That this is a sampling-without-replacement effect can be made
most transparent by re-expressing the posterior odds as n1−k

n−k
/ n0
n−k

.59,60

In the second case, the probability that τI = t is drawn from Ik(X) is completely de-
termined by M := |Ik(X)|, and equal to 1/M . Upon learning that τI = t, one can in-
fer the following three things: (i) Ik(X) �= ∅, that is, M ≥ 1, which is informative if
n1 ≤ (k− 1)(n−n1)+k, (ii) t is a member of Ik(X), and (iii)

∏t−1
t−k Xi = 1, as in sampling-

without-replacement. As a result, the posterior odds can be determined via Bayes’s rule

59The numerator is the probability of drawing a 1 at random from an urn containing n1 1’s and n0 0’s, once
k 1’s (and no 0’s) have been removed from the urn. The denominator is the probability of drawing a 0 from
the same urn.

60This effect calls to mind the key behavioral assumption made in Rabin (2002), that believers in the law of
small numbers view outcomes from an i.i.d. process as if they were instead generated by random draws without
replacement.
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in the following way:

P(Xt = 1|τI = t)

P(Xt = 0|τI = t)
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For the first term in (16), the event M ≥ 1 is dropped from the conditional argument

because it is implied by the event
∏t−1

t−k Xi = 1, and the term
P(M≥1|Xt=1�

∏t−1
t−k

Xi=1)

P(M≥1|Xt=0�
∏t−1

t−k
Xi=1)

does not

appear because it is equal to 1.
Equation (17) gives the posterior odds P(Xt=1|τI=t)

P(Xt=0|τI=t)
in favor of observing Xt = 1 (relative

to Xt = 0), for a representative trial τ = t drawn at random from Ik(X). Observe that
the prior odds ratio n1/n0 is multiplied by two separate updating factors, which we now
discuss.

The first updating factor n1−k

n1
is clearly strictly less than 1 and reflects the restriction

that the finite number of available successes places on the procedure for selecting trials
into Ik(X). In particular, it can be thought of as the information provided upon learning
that k of the n1 successes are no longer available, which leads to a sampling-without-
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replacement effect on the prior odds n1/n0. Clearly, the attenuation in the odds due to
this factor increases in the streak length k.

The second updating factor
E[ 1

M |∏t−1
t−k

Xi=1�Xt=1]
E[ 1

M |∏t−1
t−k

Xi=1�Xt=0] < 1, for t < n, reflects an additional re-

striction that the arrangement of successes and failures in the sequence places on the pro-
cedure for selecting trials into Ik(X). It can be thought of as the additional information
provided by learning that the k successes, which are no longer available, are consecu-
tive and immediately precede t. To see why the odds are further attenuated in this case,
we begin with the random variable M , which is defined as the number of trials in Ik(X).
The probability of any particular trial t ∈ Ik(X) being selected at random is 1/M . Now,
because the expectation in the numerator conditions on Xt = 1, this means that 1/M is
expected to be smaller in the numerator than in the denominator, where the expectation
instead conditions on Xt = 0. The reason why is the same as that given in the proof of
Theorem 1. For a sequence in which Xt = 1, the streak of 1’s continues on, meaning that
trial t + 1 must also be in Ik(X), and trials t + 2 through t + k each may also be in Ik(X).
By contrast, for a sequence in which Xt = 0, the streak of 1’s ends, meaning that trials
t + 1 through t +k cannot possibly be in Ik(X), which leads the corresponding 1/M to be
smaller in expectation.61 This last argument provides intuition for why the attenuation of
the odds due to this factor increases in k.

Interestingly, for the special case of k= 1, E[ 1
M |xt−1=1�xt=1]

E[ 1
M |xt−1=1�xt=0] = 1− 1

(n−1)(n1−1) < 1 when t < n,

and E[ 1
M |xn−1=1�xn=1]

E[ 1
M |xn−1=1�xn=0] = n1

n1−1 > 1 when t = n.62 These contrasting effects combine to yield the
familiar sampling-without-replacement formula:

E
[
P̂1(X)|I1(X) �= ∅�N1(X)= n1

] = n1 − 1
n− 1

(18)

as demonstrated in Lemma 1, in Appendix A.3. On the other hand, when k > 1, the bias
is substantially stronger than sampling-without-replacement (see Figure 6), though the
formula does not admit a simple representation.63 For further discussion on the relation-
ship between the bias, sampling-without-replacement, and the overlapping words paradox
(Guibas and Odlyzko (1981)), see Supplemental Material Appendix F.

A Quantitative Comparison With Sampling-Without-Replacement

For the general case, in which p̂ = n1/n is unknown, juxtaposing the bias with sampling-
without-replacement puts the magnitude of the bias into context. Let the probability
of success be given by p = P(Xt = 1). In Figure 6, the expected empirical probabil-
ity that a randomly drawn trial in Ik(X) is a success, which is the expected proportion,
E[P̂k(X)|Ik(X) �= ∅], is plotted along with the expected value of the probability that a
randomly drawn trial t ∈ {1� � � � � n}\Tk is a success, given that the k success trials Tk ⊆

61This is under the assumption that t ≤ n − k. In general, the event Xt = 0 excludes the next min{k�n − t}
trials from t + 1 to min{t + k�n} from being selected, while the event Xt = 1 leads trial t + 1 to be selected,
and does not exclude the next min{k�n− t} − 1 trials from being selected.

62The likelihood ratios can be derived following the proof of Lemma 1 in Appendix A.3. In particular,
for the equivalent likelihood ratio, P(τ=t|xt−1=1�xt=1)

P(τ=t|xt−1=1�xt=0) , the approach used to derive the numerator can also be

used to show that the denominator is equal to 1
n−2 (

n0−1
n1

+ n1−1
n1−1 ). Further, in the case of t = n, it is clear that

P(τ = n|xn−1 = 1�xn = 0) = 1
n1

. Each likelihood ratio then follows from dividing and collecting terms.
63See Supplemental Zip file for the formula used to produce Figure 6.
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FIGURE 6.—The dotted lines correspond to the bias from sampling-without-replacement. It is the expected
probability of a success, given that k successes are first removed from the sequence (assuming p = �5). The
solid lines correspond to the expected proportion from Figure 1.

{1� � � � � n} have already been drawn from the sequence (sampling-without-replacement),
E

[
N1(X)−k

n−k

∣∣ N1(X) ≥ k
]
. The plot is generated using the combinatorial results discussed

in Section 2.1. Note that in the case of k = 1, the bias is identical to sampling-without-
replacement, as shown in Equation (18).64 Observe that for k > 1, and n not too small,
the bias in the expected proportion is considerably larger than the corresponding bias
from sampling-without-replacement.

64This appears to contradict Equation (17), that is, that the bias in the procedure used to select the subset of
trials I1k(X) is stronger than sampling-without-replacement for t < n, whereas it is non-existent (thus weaker)
for t = n. This disparity is due to the second updating factor, which relates to the arrangement. It turns out that
for k= 1, the determining aspect of the arrangement that influences this updating factor is whether or not the
final trial is a success, as this determines the number of successes in the first n− 1 trials, where M = n1 −Xn.
If one were to instead fix M rather than n1, then sampling-without-replacement relative to the number of
successes in the first n − 1 trials would be an accurate description of the mechanism behind the bias, and it
induces a negative dependence between any two trials within the first n− 1 trials of the sequence. Therefore,
it is sampling-without-replacement with respect to M that determines the bias when k = 1.
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APPENDIX E: THE FORMULA USED TO GENERATE THE SAMPLING DISTRIBUTION
AND CALCULATE EXPECTATIONS

We describe the formula used to build the exact sampling distribution of the proportion,
and difference in proportions, from which we calculate expectations and plot histograms.

E.1. Proportion

Given n trials and streaks of length k, we observe that the proportion of successes on
the trials that immediately follow k consecutive success P̂k(x) can be represented simply
as the the number of successes on trials that immediately follow a streak of k consecutive
successes divided by the total number of trials—i.e. failures and success—that immedi-
ately follow a streak of k consecutive successes. In particular, for a sequence x ∈ {0�1}n of
successes and failures, we have:

P̂k(x)= M1(x)
M0(x)+M1(x)

�

where M0(x) := |{i ∈ {k + 1� � � � � n} : (1 − xi)
∏i−1

j=i−k xj = 1}| is the number of failures
that immediately follow k consecutive successes (suppressing the k to ease notation).
Similarly, the number of successes that immediately follow k consecutive successes is
defined as M1(x) := {i ∈ {k + 1� � � � � n} : xi

∏i−1
j=i−k xj = 1}. Finally, the expected value of

P̂k(x) is uniquely determined by the joint distribution of counts P((M0(X)�M1(X)) =
(m0�m1)).

The algorithm described below (recursively) constructs the exact joint distribution of
counts, by associating each unique count realization, which we call a key, with its cor-
responding probability.65 In general, for a sequence of length n and a streak of length
k this joint distribution can be represented as a dictionary of (key:probability) pairs
D := (m : pD(m))m∈Dc , where m := (m0�m1) is a unique pair, Dc corresponds to the set of
count realizations with non-zero probability, i.e.

Dc := {
m ∈N

2|pD(m) > 0
}

and pD(m) := P((M0(X)�M1(X)) = (m0�m1)).
Table E.I reports the distribution over the sample space of sequences, and the corre-

sponding dictionary, for the simple case of n = 3 and k = 1. From the dictionary one
can derive the sampling distribution of the proportion and directly compute the expected
proportion:

E
[
P̂k(x)|Ik(x) �= ∅] =

∑
m∈D∗

c

m1

m0 +m1p
∗
D(m)�

where D∗
c =Dc \ {(0�0)} and p∗

D(m) := pD(m)/
∑

m′∈D∗
c
pD(m′).

Let D(�� r) be the dictionary that represents the count–probability pairs for the remain-
ing r trials of a sequence that has � ≤ k consecutive successes immediately preceding the

65This algorithm, which builds upon an algorithm suggested by Michael J. Wiener, replaces an exact formula
based on the joint distribution of runs of various lengths that we derived in a previous working paper version
of this manuscript. The previous formula, while numerically tractable, was less efficient.
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TABLE E.I

DICTIONARY REPRESENTATION OF COUNT-PROBABILITY PAIRSa

Sample space of sequences

Sequence Probability Count

000 q3 (0�0)
001 q2p (0�0)
010 q2p (1�0)
100 q2p (1�0)
011 qp2 (0�1)
101 qp2 (1�0)
110 qp2 (1�1)
111 p3 (0�2)

Dictionary

Count Probability
m : pD(m)

(0�0) : q2

(1�0) : (q+ q2)p
(0�1) : qp2

(1�1) : qp2

(0�2) : p3

aIn the table to the left column one lists the sample space of eight possible sequence realizations from three trials. Column two
lists the probability with which the sequence occurs, where p is the probability of success and q is the probability of failure. The third
column lists the number of (failures, successes) that immediately follow a success. In the table to the right the joint distribution is
represented as a dictionary of count–probability pairs. Each unique count m = (m0�m1) has a unique associated probability equal to
the sum of the probabilities of all sequences with the same associated count (see the table on the left).

current trial. For example, if k = 2 then D(0�0) = D(1�0) = D(2�0) = ((0�0) : 1), as
when zero trials remain in the sequence the only count possible is (0�0), which occurs
with probability 1. Also note that D(1�1) = ((0�0) : 1), D(2�1) = ((1�0) : q� (0�1) : p),
and D(2�2) = ((1�0) : q� (1�1) : pq� (0�2) : p2), as a trial can only be counted as a fail or
success if it is immediately preceded by �= k= 2 consecutive successes. The key observa-
tion is that given the initial condition D(��0) = ((0�0) : 1) for 0 ≤ � ≤ k, the dictionaries
D(�� r) can be defined recursively for r > 0 and 0 ≤ �≤ k, and take the following form:

D(�� r) =
{
D(0� r − 1)(0�0):q 
D(�+ 1� r − 1)(0�0):p� if � < k�

D(0� r − 1)(1�0):q 
D(k� r − 1)(0�1):p� if �= k�

where: (i) the operation Dm′ :p′ := (m + m′ : pD(m) × p′)m∈Dc increments each count m
with the addition of m′, and scales its corresponding probability pD(m) by the probability
p′ of the increment, and (ii) given the dictionaries A and B, the operation A 
 B :=
(m : (pA + pB)(m))m∈Ac∪Bc defines the union of two dictionaries as the union of their
counts, where the corresponding probabilities for a key that appears in both dictionaries
are summed together (we assume that pA(m) = 0 for m /∈ Ac; also for B). If a trial is
immediately preceded by � < k consecutive successes, then with probability q (p) the
next trial to its right will be immediately preceded by 0 (� + 1) consecutive successes;
regardless of the outcome of the trial, m′ = (0�0) additional failures and successes will be
counted as immediately preceded by k successes and r − 1 trials will remain. If, on the
other hand, a trial is immediately preceded by � = k consecutive successes (and there is
at least one trial remaining, i.e. r > 0), then with probability q (p) the next trial to its right
will be immediately preceded by 0 (k) consecutive successes and we will count m′ = (1�0)
((0�1)) additional failures and successes; regardless of the outcome of the trial, r−1 trials
will remain.

Algorithm 1 describes the complete recursive procedure.
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Algorithm 1 Recursive formula that builds the collection of dictionaries D. Of interest are
the dictionaries D(0� n) for n = k+1� � � � �N which correspond to the joint distribution of
the total number of (successes, failures) that immediately follow k consecutive successes
in n trials.

E.2. Difference in Proportions

The difference in proportions can be computed from a dictionary D := (m : pD(m))m∈Dc ,
where Dc corresponds to the set of count realizations with non-zero probability i.e.

Dc := {
m ∈N

4|pD(m) > 0
}

and pD(m) := P((M0
0 (X)�M1

0 (X)�M0
1 (X)�M1

1 (X)) = (m0
0�m

1
0�m

0
1�m

1
1)). The variables

M0
1 (X) and M1

1 (X) yield the total number of failures and successes (respectively) on those
trials that immediately follow a streak of k successes, whereas M0

0 (X) and M1
0 (X) yield

the total number of failures and successes (respectively) on those trials that immediately
follow a streak of k failures.

Let D(�0� �1� r) be the dictionary that represents the count–probability pairs for the
remaining r trials of a sequence in which there are �0 ≤ k consecutive failures and �1 ≤
k consecutive successes on the immediately preceding trials (so that �0�1 = 0). These
dictionaries can be constructed recursively in a way similar to that shown in Supplemental
Material Appendix E.1:

D(�0� �1� r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D(�0 + 1�0� r − 1)(0�0�0�0):q 
D(0� �1 + 1� r − 1)(0�0�0�0):p�

if max{�0� �1}<k�

D(k�0� r − 1)(1�0�0�0):q 
D(0�1� r − 1)(0�1�0�0):p� if �0 = k�

D(1�0� r − 1)(0�0�1�0):q 
D(0�k� r − 1)(0�0�0�1):p� if �1 = k�

See Supplemental Zip File for the corresponding code.
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APPENDIX F: THE RELATIONSHIP BETWEEN THE STREAK SELECTION BIAS AND
KNOWN BIASES AND PARADOXES

F.1. Sampling-Without-Replacement and the Bias for Streaks of Length k = 1

A brief inspection of Table I in Section 1 reveals how the dependence between the first
n − 1 flips in the sequence arises. In particular, when the coin is flipped three times, the
number of H’s in the first two flips determines the number of observations of flips that
immediately follow an H. Because TT must be excluded, the first two flips will consist
of one of three equally likely sequences: HT, TH, or HH. For the two sequences with
a single H—HT and TH—if a researcher were to find an H within the first two flips of
the sequence and then select the adjacent flip for inspection, the probability of heads on
the adjacent flip would be 0, which is strictly less than the overall proportion of heads
in the sequence. This can be thought of as a sampling-without-replacement effect. More
generally, across the three sequences, HT, TH, and HH, the expected probability of the
adjacent flip being a heads is (0 + 0 + 1)/3 = 1/3. This probability reveals the (negative)
sequential dependence that exists between the first two flips of the sequence. Further, the
same negative dependence holds for any two flips in the first n − 1 flips of a sequence of
length n, regardless of their positions. Thus, when k = 1, it is neither time’s arrow nor the
arrangement of flips within the sequence that determines the bias.

This same sampling-without-replacement feature also underlies a classic form of selec-
tion bias known as Berkson’s bias (aka Berkson’s paradox). Berkson (1946) presented a
hypothetical study of the relationship between two diseases that, while not associated in
the general population, become negatively associated in the population of hospitalized
patients. The cause of the bias is subtle: patients are hospitalized only if they have at least
one of the two particular diseases. To illustrate, assume that someone from the general
population has a given disease (Y = “Yes”) or does not (N = “No”), with equal chances.
Just as in the coin flip example, anyone with neither disease (NN) is excluded, while a pa-
tient within the hospital population must have one of the three equally likely profiles: YN,
NY, or YY. Thus, just as with the coin flips, the probability of a patient having another
disease, given that he already has one disease, is 1/3.

The same sampling-without replacement feature again arises in several classic condi-
tional probability paradoxes. For example, in the Monty Hall problem, the game show
host inspects two doors, which can together be represented as one of three equally likely
sequences GC, CG, or GG (G = “Goat,” C = “Car”), then opens one of the G doors from
the realized sequence. Thus, the host effectively samples G without replacement (Selvin
(1975), Nalebuff (1987), Vos Savant (1990)).66

Sampling-without-replacement also underlies a well-known finite sample bias that
arises in standard estimates of autocorrelation in time series data (Yule (1926), Shaman
and Stine (1988)). This interpretation of finite sample bias, which does not appear to have
been previously noted, allows one to see how this bias is closely related to those above.
To illustrate, let x be a randomly generated sequence consisting of n trials, each of which
is an i.i.d. draw from some continuous distribution with finite mean and variance. For
a researcher to compute the autocorrelation, she must first determine its sample mean x̄
and variance σ̂2(x), then calculate the autocorrelation ρ̂t�t+1(x) = ˆcovt�t+1(x)/σ̂2(x), where
ˆcovt�t+1(x) is the autocovariance.67 The total sum of values nx̄ in a sequence serves as the

66The same structure also appears in what is known as the boy-or-girl paradox (Miller and Sanjurjo (2015a)).
A slight modification of the Monty Hall problem makes it identical to the coin flip bias presented in Table I
(see Miller and Sanjurjo (2015a)).

67The autocovariance is given by ˆcovt�t+1(x) := 1
n−1

∑n−1
i=1 (xi − x̄)(xi+1 − x̄).
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analogue to the number of H’s (or G’s/Y’s) in a sequence in the examples given above.
Given nx̄, the autocovariance can be represented as the expected outcome from a proce-
dure in which one draws (at random) one of the n trial outcomes xi, and then takes the
product of its difference from the mean (xi − x̄), and another trial outcome j’s difference
from the mean. Because the outcome’s value xi is essentially drawn from nx̄, without
replacement, the available sum total (nx̄ − xi) is averaged across the remaining n − 1
outcomes, which implies that the expected value of another outcome j’s (j �= i) difference
from the mean is given by E[xj|xi� x̄] − x̄ = (nx̄ − xi)/(n − 1) − x̄ = (x̄ − xi)/(n − 1).
Therefore, given xi − x̄, the expected value of the product (xi − x̄)(xj − x̄) must equal
(xi − x̄)(x̄− xi)/(n− 1)= −(xi − x̄)2/(n− 1), which is independent of j. Because xi and
j were selected at random, this implies that the expected autocorrelation, given x̄ and
σ̂2(x), is equal to −1/(n − 1) for all x̄ and σ̂2(x). This result accords with known results
on the O(1/n) bias in discrete-time autoregressive processes (Yule (1926), Shaman and
Stine (1988)), and happens to be identical to the result in Theorem 4 for the expected dif-
ference in proportions (see Appendix A.3). In the context of time series regression, this
bias is known as the Hurwicz bias (Hurwicz (1950)), which is exacerbated when one intro-
duces fixed effects into a time series model with a small number of time periods (Nerlove
(1967, 1971), Nickell (1981)).68,69

F.2. Pattern Overlap and the Bias for Streaks of Length k > 1

In Figure 6 of Supplemental Material Appendix D, we compare the magnitude of the
bias in the (conditional) expected proportion to the pure sampling-without-replacement
bias, in a sequence of length n. As can be seen, the magnitude of the bias in the expected
proportion is nearly identical to that of sampling-without-replacement for k = 1. How-
ever, for the bias in the expected proportion, the relatively stronger sampling-without-
replacement effect that operates within the first n − 1 terms of the sequence is balanced
by the absence of bias for the final term.70 On the other hand, for k > 1 the bias in the ex-
pected proportion is considerably stronger than the pure sampling-without-replacement
bias. One intuition for this is provided in the discussion of the updating factor in Sup-
plemental Material Appendix D. Here we discuss another intuition, which has to do with
the overlapping nature of the selection criterion when k > 1, which is related to what is
known as the overlapping words paradox (Guibas and Odlyzko (1981)).

For simplicity, assume that a sequence is generated by n = 5 flips of a fair coin. For
the simple case in which streaks have length k = 1, the number of flips that immediately

68The bias that is exacerbated by the introduction of of exogenous variables is commonly known as the
“Nickell bias,” which was first explored by simulation by Nerlove (1967, 1971). It is an example of what is
known as the incidental parameter problem (Neyman and Scott (1948), Lancaster (2000)).

69In a comment on this paper, Rinott and Bar-Hillel (2015) assert that the work of Bai (1975) (and refer-
ences therein) demonstrate that the bias in the proportion of successes on the trials that immediately follow
a streak of k or more successes follows directly from known results on the finite sample bias of Maximum
Likelihood estimators of transition probabilities in Markov chains, as independent Bernoulli trials can be rep-
resented by a Markov chain with each state defined by the sequence of outcomes in the previous k trials. While
it is true that the MLE of the corresponding transition matrix is biased, and correct to note the relationship in
this sense, the cited theorems do not indicate the direction of the bias, and in any event do not directly apply in
the present case because they require that transition probabilities in different rows of the transition matrix not
be functions of each other, and not be equal to zero, a requirement which does not hold in the corresponding
transition matrix. Instead, an unbiased estimator of each transition probability will exist, and will be a function
of the overall proportion.

70The reason for this is provided in the alternative proof of Lemma 1 in Appendix A.3.
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follow a heads is equal to the number of instances of H in the first n − 1 = 4 flips. For
any given number of H’s in the first four flips, say three, if one were to sample an H from
the sequence and then examine an adjacent flip (within the first four flips), then because
any H could have been sampled, across all sequences with three H’s in the first four flips,
any H appearing within the first four flips is given equal weight regardless of the sequence
in which it appears. The exchangeability of outcomes across equally weighted sequences
with an H in the sampled position (and three H’s overall) therefore implies that for any
other flip in the first four flips of the sequence, the probability of an H is equal to 3−1

4−1 = 2
3 ,

regardless of whether or not it is an adjacent flip. On the other hand, for the case of streaks
of length k = 2, the number of opportunities to observe a flip that immediately follows
two consecutive heads is equal to the number of instances of HH in the first four flips.
Because the pattern HH can overlap with itself, whereas the pattern H cannot, then for
a sequence with three H’s, if one were to sample an HH from the sequence and examine
an adjacent flip within the first four flips, it is not the case that any two of the H’s from
the sequence can be sampled. For example, in the sequence HHTH, only the first two
H’s can be sampled. Because the sequences HHTH and HTHH each generate just one
opportunity to sample, this implies that the single instance of HH within each of these
sequences is weighted twice as much as any of the two (overlapping) instances of HH
within the two sequences HHHT and THHH that each allow two opportunities to sample,
despite the fact that each sequence has three heads in the first four flips. This implies that,
unlike in the case of k = 1, when sampling an instance of HH from a sequence with three
heads in the first four flips, the remaining outcomes H and T are no longer exchangeable,
as the arrangements HHTH and HTHH, in which every adjacent flip within the first four
flips is a tails, must be given greater weight than the arrangements HHHT and THHH, in
which half of the adjacent flips are heads.

This consequence of pattern overlap is closely related to the overlapping words paradox,
which states that for a sequence (string) of finite length n, the probability that a pattern
(word) appears, for example, _HTTHH_, depends not only on the length of the pattern
relative to the length of the sequence, but also on how the pattern overlaps with itself
(Guibas and Odlyzko (1981)).71 For example, while the expected number of (potentially
overlapping) occurrences of a particular two-flip pattern—TT, HT, TH, or HH—in a se-
quence of four flips of a fair coin does not depend on the pattern, its probability of occur-
rence does.72 The pattern HH can overlap with itself, so can have up to three occurrences
in a single sequence (HHHH), whereas the pattern HT cannot overlap with itself, so can
have at most two occurrences (HTHT). Because the expected number of occurrences of
each pattern must be equal, this implies that the pattern HT is distributed across more
sequences, meaning that any given sequence is more likely to contain this pattern.73
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