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Few theorems in the history of mathematics
have inspired mathematicians and philosophers
as much as Gödel’s incompleteness theorems.
The first incompleteness theorem states that, for
any rich enough1 consistent mathematical theory,2

there exists a statement that cannot be proved or
disproved within the theory. The second incom-
pleteness theorem states that for any rich enough
consistent mathematical theory, the consistency
of the theory itself cannot be proved (or disproved)
within the theory.

In this paper we give a new proof for Gödel’s
second incompleteness theorem, based on Kol-
mogorov complexity, Chaitin’s incompleteness
theorem, and an argument that resembles the
surprise examination paradox.

We then go the other way around and suggest
that the second incompleteness theorem gives a
possible resolution of the surprise examination
paradox. Roughly speaking, we argue that the
flaw in the derivation of the paradox is that it
contains a hidden assumption that one can prove
the consistency of the mathematical theory in
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1We require that the theory can express and prove ba-

sic arithmetical truths. In particular, ZFC and Peano

arithmetic (PA) are rich enough.
2Here and below, we consider only first-order theories

with recursively enumerable sets of axioms. For simplic-

ity, let us assume that the set of axioms is computable.

which the derivation is done; which is impossible
by the second incompleteness theorem.

The First Incompleteness Theorem
Gödel’s original proof for the first incompleteness
theorem [Gödel31] is based on the liar paradox.

The liar paradox: consider the
statement “this statement is false.”
The statement can be neither true
nor false.

Gödel considered the related statement “this state-
ment has no proof.” He showed that this statement
can be expressed in any theory that is capable of
expressing elementary arithmetic. If the statement
has a proof, then it is false; but since in a consistent
theory any statement that has a proof must be
true, we conclude that if the theory is consistent,
the statement has no proof. Since the statement
has no proof, it is true (over N). Thus, if the the-
ory is consistent, we have an example for a true
statement (over N) that has no proof.

The main conceptual difficulty in Gödel’s orig-
inal proof is the self-reference of the statement
“this statement has no proof.” A conceptually
simpler proof of the first incompleteness the-
orem, based on Berry’s paradox, was given by
Chaitin [Chaitin71].

Berry’s paradox: consider the ex-
pression “the smallest positive in-
teger not definable in under eleven
words.” This expression defines
that integer in under eleven words.

To formalize Berry’s paradox, Chaitin uses the
notion of Kolmogorov complexity. The Kolmogorov
complexity K(x) of an integer x is defined to be the
length (in bits) of the shortest computer program
that outputs x (and stops). Formally, to defineK(x)
one has to fix a programming language, such as
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LISP, Pascal or C++. Alternatively, one can define
K(x) by considering any universal Turing machine.

Chaitin’s incompleteness theorem states that
for any rich enough consistent mathematical
theory, there exists a (large enough) integer L

(depending on the theory and on the programming
language that is used to define Kolmogorov com-
plexity) such that, for any integer x, the statement
“K(x) > L” cannot be proved within the theory.

The proof given by Chaitin is as follows. Let L be
a large enough integer. Assume for a contradiction
that, for some integer x, there is a proof for the
statement “K(x) > L”. Let w be the first proof
(say, according to the lexicographic order) for a
statement of the form “K(x) > L”. Let z be the
integer x such that w proves “K(x) > L”. It is easy
to give a computer program that outputs z: the
program enumerates all possible proofs w , one by
one, and for the first w that proves a statement of
the form “K(x) > L”, the program outputs x and
stops. The length of this program is a constant
+ logL. Thus, if L is large enough, the Kolmogorov
complexity of z is less than L. Since w is a proof
for “K(z) > L” (which is a false statement), we
conclude that the theory is inconsistent.

Note that the number of computer programs of
length L bits is at most 2L+1. Hence, for any integer
L, there exists an integer 0 ≤ x ≤ 2L+1, such that
K(x) > L. Thus, for some integer x, the statement
“K(x) > L” is a true statement (over N) that has no
proof.

A different proof for Gödel’s first incomplete-
ness theorem, also based on Berry’s paradox, was
given by Boolos [Boolos89] (see also [Vopenka66,
Kikuchi94]). Other proofs for the first incomplete-
ness theorem are also known (for a recent survey,
see [Kotlarski04]).

The Second Incompleteness Theorem
The second incompleteness theorem follows di-
rectly from Gödel’s original proof for the first in-
completeness theorem. As described above, Gödel
expressed the statement “this statement has no
proof” and showed that, if the theory is consistent,
this is a true statement (over N) that has no proof.
Informally, because the proof that this is a true
statement can be obtained within any rich enough
theory, such as Peano arithmetic (PA) or ZFC, if
the consistency of the theory itself can also be
proved within the theory, then the statement can
be proved within the theory, which is a contra-
diction. Hence, if the theory is rich enough, the
consistency of the theory cannot be proved within
the theory.

Thus the second incompleteness theorem fol-
lows directly from Gödel’s original proof for the
first incompleteness theorem. However, the sec-
ond incompleteness theorem doesn’t follow from
Chaitin’s and Boolos’s simpler proofs for the first
incompleteness theorem. The problem is that these

proofs only show the existence of a true statement
(over N) that has no proof, without giving an
explicit example of such a statement.

A different proof for the second incomplete-
ness theorem, based on Berry’s paradox, was
given by Kikuchi [Kikuchi97]. This proof is model-
theoretic and seems to us somewhat less intuitive
for people who are less familiar with model theory.
For previous model-theoretic proofs for the sec-
ond incompleteness theorem see [Kreisel50] (see
also [Smoryński77]).

Our Approach
We give a new proof for the second incomplete-
ness theorem, based on Chaitin’s incompleteness
theorem and an argument that resembles the
surprise examination paradox (also known as the
unexpected hanging paradox).

The surprise examination para-

dox: the teacher announces in
class: “next week you are going
to have an exam, but you will not
be able to know on which day of
the week the exam is held until
that day.” The exam cannot be
held on Friday, because otherwise,
the night before the students will
know that the exam is going to be
held the next day. Hence, in the
same way, the exam cannot be held
on Thursday. In the same way, the
exam cannot be held on any of the
days of the week.

Let T be a (rich enough) mathematical theory,
such as PA or ZFC. For simplicity, the reader can
assume thatT is ZFC, the theory of all mathematics;
thus any mathematical proof, and in particular any
proof in this paper, is obtained within T .

Let L be the integer guaranteed by Chaitin’s
incompleteness theorem. Thus, for any integer x,
the statement “K(x) > L” cannot be proved (in the
theory T ) unless the theory is inconsistent. Note,
however, that for any integer x such that K(x) ≤ L,
there is a proof (in T ) for the statement “K(x) ≤ L”,
simply by giving the computer program of length at
most L that outputs x and stops and by describing
the running of that computer program until it
stops.

Let m be the number of integers 0 ≤ x ≤ 2L+1

such that K(x) > L. (The number m is analogous
to the day of the week on which the exam is
held in the surprise examination paradox.) Recall
that because the number of computer programs
of length L bits is at most 2L+1, there exists at
least one integer 0 ≤ x ≤ 2L+1 such that K(x) > L.
Hence, m ≥ 1.

Assume that m = 1. Thus there exists a sin-
gle integer x ∈ {0, . . . ,2L+1} such that K(x) > L,
and every other integer y ∈ {0, . . . ,2L+1} satisfies
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K(y) ≤ L. In this case, one can prove that x satis-
fies K(x) > L by proving that every other integer
y ∈ {0, . . . ,2L+1} satisfies K(y) ≤ L (and recall that
there is a proof for every such statement). Because
we proved that m ≥ 1, the only x for which we
didn’t prove K(x) ≤ L must satisfy K(x) > L.

Thus if m = 1, then for some integer x the
statement “K(x) > L” can be proved (in T ). But
we know that for any integer x the statement
“K(x) > L” cannot be proved (in T ) unless the
theory is inconsistent. Hence, if the theory is
consistent, m ≥ 2. As we assume that T is a rich
enough theory, we can prove the last conclusion in
T . That is, we can prove in T that if T is consistent,
then m ≥ 2.

Assume for a contradiction that the consistency
of T can be proved within T . Thus we can prove
in T the statement “m ≥ 2”. In the same way, we
can work our way up and prove that m ≥ i + 1,
for every i ≤ 2L+1 + 1. In particular, m > 2L+1 + 1,
which is a contradiction, as m ≤ 2L+1 + 1 (by the
definition of m).

The Formal Proof
To present the proof formally, one needs to be
able to express provability within T , in the lan-
guage of T . The standard way of doing that is
by assuming that the language of T contains
the language of arithmetics and by encoding ev-
ery formula and every proof in T by an integer,
usually referred to as the Gödel number of that
formula or proof. For a formula A, let [A\ be
its Gödel number. Let PrT ([A\) be the following
formula: there exists w that is the Gödel number of

a T -proof for the formula A. Intuitively, PrT ([A\)
expresses the provability of the formula A. For-
mally, the formulas PrT ([A\) satisfy the so-called
Hilbert-Bernays derivability conditions (see, for
example, [Mendelson97]):

1. If T proves A, then T proves PrT ([A\).
2. T proves: PrT ([A\) → PrT ([PrT ([A\)\).
3. T proves: PrT ([A → B\) → (PrT ([A\) →

PrT ([B\)).

The consistency of T is usually expressed as the
formula Con(T) ≡ ¬PrT ([0 = 1\). In all that comes
below, T ⊢ A denotes “T proves A”. We will prove
that T 6⊢ Con(T), unless T is inconsistent.

For our proof, we will need two facts about
provability of claims concerning Kolmogorov com-
plexity. First, we need to know that Con(T) →
¬PrT ([K(x) > L\). We will use the following
form of Chaitin’s incompleteness theorem (see,
for example, [Kikuchi97], Theorem 3.3).

T ⊢ Con(T) →∀x ∈ {0, . . . ,2L+1}(1)

¬PrT ([K(x) > L\).

Second, we need to know that (K(y) ≤ L) →

PrT ([K(y) ≤ L\). We will use the following form
(formally, this follows, as K(y) ≤ L is a Σ1 formula;

see, for example, [Kikuchi97], Theorem 1.2 and
Section 2).

T ⊢ ∀y ∈ {0, . . . ,2L+1} ((K(y) ≤ L)(2)

→ PrT ([K(y) ≤ L\)) .

Assume for a contradiction that T is consistent
and T ⊢ Con(T). Then, by Equation 1,

(3) T ⊢ ∀x ∈ {0, . . . ,2L+1} ¬PrT ([K(x) > L\).

We will derive a contradiction by proving by
induction that, for every i ≤ 2L+1 + 1, T ⊢ (m ≥

i + 1), where m is defined as in the previous
section. Because, obviously, T ⊢ (m ≤ 2L+1 + 1),
this is a contradiction to the assumption that T
is consistent and T ⊢ Con(T). Because we already
know that T ⊢ (m ≥ 1), we already have the
base case of the induction. Assume (the induction
hypothesis) that for some 1 ≤ i ≤ 2L+1 + 1,

T ⊢ (m ≥ i).

We will show that T ⊢ (m ≥ i + 1) as follows. Let
r = 2L+1 + 1− i.

1. By the definition of m, T ⊢ (m = i) →

∃ different y1, . . . , yr ∈ {0, . . . ,2L+1}
∧r
j=1

(K(yj) ≤ L).
2. Hence, by Equation 2, T ⊢ (m = i) →

∃ different y1, . . . , yr ∈ {0, . . . ,2L+1}
∧r
j=1

PrT ([K(yj) ≤ L\).
3. For everydifferent y1, . . . , yr ∈{0, . . . ,2L+1},

and every x ∈ {0, . . . ,2L+1} \ {y1, . . . , yr},

T ⊢ (m ≥ i)→
(∧r

j=1(K(yj)≤L)→ (K(x) >

L)
)
, (by the definition of m), and

hence by Hilbert-Bernays derivabil-
ity conditions, T ⊢ PrT ([m ≥ i\) →(∧r

j=1 PrT ([K(yj) ≤ L\)→PrT ([K(x)>L\)
)
.

4. By the previous two items, T ⊢ ((m =

i) ∧ PrT ([m ≥ i\)) → ∃x ∈ {0, . . . ,2L+1}

PrT ([K(x) > L\).
5. As T ⊢ (m ≥ i) (by the induction hypoth-

esis), T ⊢ PrT ([m ≥ i\). Hence, T ⊢ (m =

i) → ∃x ∈ {0, . . . ,2L+1} PrT ([K(x) > L\).
6. Hence, by Equation 3, T ⊢ ¬(m = i).
7. Hence, as T ⊢ (m ≥ i), T ⊢ (m ≥ i + 1).

�

A Possible Resolution of the Surprise
Examination Paradox
In the previous sections we gave a proof for Gödel’s
second incompleteness theorem by an argument
that resembles the surprise examination paradox.
In this section we go the other way around and
suggest that the second incompleteness theorem
gives a possible resolution of the surprise exami-
nation paradox. Roughly speaking, we argue that
the flaw in the derivation of the paradox is that it
contains a hidden assumption that one can prove
the consistency of the mathematical theory in
which the derivation is done, which is impossible
by the second incompleteness theorem.
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The important step in analyzing the paradox
is the translation of the teacher’s announcement
into a mathematical language. The key point lies
in the formalization of the notions of surprise and
knowledge.

As before, let T be a rich enough mathematical
theory (say, ZFC). Let {1, . . . ,5} be the days of
the week and let m denote the day of the week
on which the exam is held. Recall the teacher’s
announcement: “next week you are going to have
an exam, but you will not be able to know on
which day of the week the exam is held until
that day.” The first part of the announcement is
formalized as m ∈ {1, . . . ,5}. A standard way that
appears in the literature to formalize the second
part is by replacing the notion of knowledge by
the notion of provability [Shaw58, Fitch64] (for a
recent survey see [Chow98]). The second part is
rephrased as “on the night before the exam you
will not be able to prove, using this statement,
that the exam is tomorrow,” or, equivalently, “for
every 1 ≤ i ≤ 5, if you are able to prove, using this
statement, that (m ≥ i) → (m = i), then m 6= i.”
This can be formalized as the following statement
that we denote by S (the statement S contains both
parts of the teacher’s announcement):

S ≡ [m ∈ {1, . . . ,5}]
∧

1≤i≤5[
PrT ,S ([m ≥ i →m = i\) → (m ≠ i)

]
,

where PrT ,S([A\) expresses the provability of a
formula A from the formula S in the theory T (for-
mally, PrT ,S([A\) is the formula: there exists w that
is the Gödel number of a T -proof for the formula A
from the formula S). Note that the formula S is
self-referential. Nevertheless, it is well known that
this is not a real problem and that such a formula
S can be formulated (see [Shaw58, Chow98]; for
more about this issue, see below).

Let us try to analyze the paradox when the
teacher’s announcement is formalized as the above
statement S. We will start from the last day. The
statement m ≥ 5 together with m ∈ {1, . . . ,5}
imply m = 5. Hence, PrT ,S ([m ≥ 5 →m = 5\), and
by S we can conclude m 6= 5. Thus S implies
m ∈ {1, . . . ,4}. In the same way, working our way
down, we can prove PrT ,S ([m ≥ 4 →m = 4\), and
by S we can conclude m 6= 4. In the same way,
m 6= 3,m 6= 2, andm 6= 1. In other words, S implies
m ∉ {1, . . . ,5}. Thus S contradicts itself.

The fact that S contradicts itself gives a certain
explanation for the paradox; the teacher’s an-
nouncement is just a contradiction. On the other
hand, we feel that this formulation doesn’t fully
explain the paradox: Note that, because S is a con-
tradiction, it can be used to prove any statement.
So, for example, on Tuesday night the students
can use S to prove that the exam will be held
on Wednesday. Is it fair to say that this means
that they know that the exam will be held on

Wednesday? No, because they can also use S to
prove that the exam will be held on Thursday. Thus
we conclude that, since S is a contradiction, prov-

ability from S doesn’t imply knowledge. Recall,
however, that the very intuition behind the formal-
ization of the teacher’s announcement as S was
that the notion of knowledge can be replaced by
the notion of provability. But if provability from S

doesn’t imply knowledge, the statement S doesn’t
seem to be an accurate translation of the teacher’s
announcement into a mathematical language.

Is there a better way to formalize the teacher’s
announcement? To answer this question, let us an-
alyze the situation from the students’ point of view
on Tuesday night. There are three possibilities:

1. On Tuesday night, the students are not
able to prove that the exam will be held on
Wednesday.

2. On Tuesday night, the students are able
to prove that the exam will be held on
Wednesday, but they are also able to prove
for some other day that the exam will be
held on that day.
(Note that this possibility can only occur
if the system is inconsistent and is in
fact equivalent to the inconsistency of the
system).

3. On Tuesday night, the students are able
to prove that the exam will be held on
Wednesday, and they are not able to prove
for any other day that the exam will be
held on that day.

We feel that only in the third case is it fair to say
that the students know that the exam will be held
on Wednesday. They know that the exam will be
held on Wednesday only if they are able to prove
that the exam will be held on Wednesday, and they
are not able to prove for any other day that the
exam will be held on that day.

We hence rephrase the second part of the
teacher’s announcement as “for every 1 ≤ i ≤ 5, if
one can prove (using this statement) that (m ≥ i) →
(m = i), and there is no j 6= i for which one can
prove (using this statement) (m ≥ i) → (m = j),
then m 6= i”. Thus the teacher’s announcement is
the following statement:3

S ≡ [m ∈ {1, . . . ,5}]
∧

1≤i≤5





PrT,S ([m ≥ i →m = i\)

∧

1≤j≤5,j≠i

¬PrT,S
(
[m ≥ i →m = j\

)

→ (m ≠ i)


 .

Let us try to analyze the paradox when
the teacher’s announcement is formalized as

3This statement is equivalent to one of the suggestions

(the statement I5) made by Halpern and Moses [HM86].
However, the analysis of the paradox there is different

from the one shown here and makes no use of Gödel’s

second incompleteness theorem.
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the new statement S. As before, m ≥ 5 to-
gether with m ∈ {1, . . . ,5} imply m = 5. Hence,
PrT ,S ([m ≥ 5→m = 5\). However, this time
one cannot use S to conclude m 6= 5, as it
is possible that for some j 6= 5 we also have
PrT ,S

(
[m ≥ 5 →m = j\

)
. This happens iff the

system T + S is inconsistent. Formally, this time
one cannot use S to deduce m 6= 5, but rather the
formula

Con(T , S) → (m 6= 5),

where Con(T , S) ≡ ¬PrT ,S([0 = 1\) expresses the
consistency of T + S. Because by the second in-
completeness theorem one cannot prove Con(T , S)
within T + S, we cannot conclude that S implies
m 6= 5 and hence cannot continue the argument.

More precisely, because S doesn’t imply m ∈

{1, . . . ,4}, but rather Con(T , S) → m ∈ {1, . . . ,4},
when we try to work our way down we do not get
the desired formula PrT ,S ([m ≥ 4 →m = 4\) but
rather the formula

PrT ,S ([Con(T , S)∧ (m ≥ 4) →m = 4\) ,

which is not enough to continue the argument.
Thus our conclusion is that if the students

believe in the consistency of T+S, the exam cannot
be held on Friday, because on Thursday night the
students will know that if T + S is consistent the
exam will be held on Friday. However, the exam
can be held on any other day of the week because
the students cannot prove the consistency of T+S.

Finally, for completeness, let us address the
issue of the self-reference of the statement S. The
issue of self-referentiality of a statement goes back
to Gödel’s original proof for the first incomplete-
ness theorem. The self-reference is what makes
Gödel’s original proof conceptually difficult and
what makes the teacher’s announcement in the
surprise examination paradox paradoxical.

To solve this issue, Gödel introduced the tech-
nique of diagonalization. The same technique can
be used here. To formalize S, we will use the nota-
tion a ⇒ b to indicate implication between Gödel
numbers a and b. That is, a ⇒ b is a statement
indicating that a is a Gödel number of a statement
A and b is a Gödel number of a statement B,
such that A → B. We will also need the function
Sub(a,b) that represents substitution of b in the
formula with Gödel number a. That is, if a is a
Gödel number of a formula A(x) with free variable
x and b is a number, then Sub(a,b) is the Gödel
number of the statement A(b).

Let vij ≡ [m ≥ i → m = j\. Denote by Q(x) the
formula

Q(x)≡[m∈{1, . . . ,5}]
∧

1≤i≤5




PrT (Sub(x, x)⇒vii)

∧

1≤j≤5,j≠i

¬PrT
(
Sub(x, x) ⇒ vij

)

→ (m ≠ i)


 .

Let q be the Gödel number of the formula Q(x).
The statement S is formalized as S ≡ Q(q). To
see that this statement is the one that we are
interested in, denote by s the Gödel number of S
and note that s = Sub(q, q). Thus

S ≡ [m ∈ {1, . . . ,5}]
∧

1≤i≤5




PrT (s ⇒ vii)

∧

1≤j≤5,j≠i

¬PrT
(
s ⇒ vij

)

→ (m ≠ i)


 .
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