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Summary

Markov’s work on chain dependence was motivated by his desire to refute a statement by Nekrasov
that pairwise independence of random summands was a necessary condition for the Weak Law of Large
Numbers. He did this by obtaining such a Law in 1906 for systems of dependent random variables,
in particular for finite homogeneous ‘Markov’ chains. Nekrasov’s incorrect assertion arose out of the
theological doctrine of free will, with which some members of the Moscow School of Mathematics of the
time were much concerned.

The first part of the paper presents the background to the above. The second part deals with the
somewhat neglected techniques of Markov’s 1906 paper, especially his use of what is now known as the
ergodicity coefficient, to express the contractive effect of applying a stochastic matrix to a column vector.
This coefficient underlies his ergodicity arguments, and his proof of the Weak Law.

Key words: Law of Large Numbers; Markov chain; Free will; Moscow Mathematical School; Contraction;
Ergodicity coefficient.

1 Introduction

Markov chains, and, more generally, Markov processes, are named after the great Russian mathe-
matician Andrei Andreevich Markov [1856—1922]. The paper in which “Markov chains” first make
an appearance in his writings (Markov, 1906) concludes with the sentence

“Thus, independence of quantities does not constitute a necessary condition for the
existence of the law of large numbers.”

This sentence encapsulates Markov’s motivation for studying schemes of chain dependence. One
of the purposes of our paper is to elucidate the little known circumstances of how his work on
a general theory of such chain dependence was influenced by interaction with Pavel Alekseevich
Nekrasov [1853-1924]. Material related to what is said here may be found within a broader context
in Seneta (1984, §8 and Appendix 1); and in Sheynin (1989a).

A second aim is to give an account of some of the techniques and concepts, introduced by Markov
within the context of chain dependence, which have persisted till the present day.

A (finite) Markov chain { X, } is a sequence of dependent variables with the following probabilistic
structure. X, denotes the ‘state’ at time n; this is one of a finite set, S, of possible values. The
conditional probability

Pr{xn-H = ]IXn =i, Xn—l = in—l» Xn—2 = in—2’ . }
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for any j,i,ip—1,ip-2,... &S

is independent of the sequence of past values {i,—i,in—2, ...} whenever {i,i,—1,i,—2,...} has
positive probability, so that the probabilistic structure of the future is completely specified by a
knowledge of the present state (X, = i). If the above conditional probability is independent of time
n (time-homogeneity) it can be denoted by p;;, and the array of numbers P = {p;;}, i, j, €S is the
transition matrix of the Markov chain. Even then, the marginal distribution of X, may differ for
various n (more formally: the homogeneous chain may not be strictly stationary). If the conditional
probability depends on n, there is a sequence of transition matrices, one for each n > 0 and the
Markov chain is inhomogeneous. In either case, an additional specification of an initial distribution
{m;}, where m; = Pr(Xo = i), ieS, completely determines the joint distribution of the X, ’s. Markov
dealt with inhomogeneous as well as homogeneous chains, but assumed that transition matrices were
strictly positive.

Special instances of Markov chains were known before Markov: the gambler’s ruin problem
dates back at least to the correspondence between Pierre de Fermat and Blaise Pascal (circa 1654);
there were various urn models—especially those due to Daniel Bernoulli in 1769 and Laplace in
1812. Fundamental results were obtained in 1845 by Irenée Jules Bienaymé [1796-1878] and then
Galton & Watson (1873—4) for the simple branching process. Quetelet [1796-1874] applied two-
state Markov chains to hydrology (see Stigler, 1975) in 1846. Contact with Chuprov in 1910 through
correspondence led Markov to realize that by considering overlapping Bernoulli trials, Ernst Heinrich
Bruns [1848-1919] had in fact studied in 1906 what came to be known as Markov-Bruns chains
(Romanovsky, 1949, Chapter VI). Markov’s outstanding contribution was a general formulation
and basic general results. The general formulation occurred in response to specific stimuli from an
unexpected and unscientific quarter.

2 Markov and Nekrasov

Markov belonged to the St. Petersburg Mathematical “School” founded by Chebyshev, and he and
Liapunov were the most eminent of Chebyshev’s disciples in probability. The work of Chebyshev
focussed on the Weak Law of Large Numbers (WLLN) and the Central Limit problem for inde-
pendent but not necessarily identically distributed summands. The probabilistic work of Markov
initially consisted in making rigorous, and in generalizing, Chebyshev’s version of the Central Limit
Theorem (CLT), following his teacher in applying the method of moments (in contrast to Liapunov’s
exploitation of characteristic functions).

In regard to the WLLN, the standard approach of this time was via the Bienaymé—Chebyshev
Inequality

Pr{|X, — EX,| > €} < Var X, /&2

where X, = Y i—; Xi/nand X;,i > 1arerandom variables. Here, since independent X;’s were being
considered with 6? = Var X; well defined, Var X, = n"2Y""_ 0?2, and thusn=2)"_ 0% — 0
was sufficient to ensure the WLLN.

More generally,

n
Var X, = ;11—2 Z Var X; +2Z Cov (X;, X;)

i=1 i<j
so the same sufficient condition would work if the X;’s were merely “pairwise independent”, thus
still resulting in the disappearance of the covariance terms. This fact was noticed by Nekrasov (1902)
in examining the “logical underpinnings” of the celebrated Inequality. This fact, obvious to us now,
but with its suggestion of orthogonality, is an important advance, and is so recognized by Chuprov
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(1959, p.168) in his monograph of 1909.

However, Nekrasov wanted to use the observed stability of averages in everyday life to infer
the pairwise independence of the X;’s (that is, to infer that pairwise independence is necessary for
the WLLN). Behind this was his belief that observed statistical laws for observational data implied
“free will”, and that pairwise independence was an expression of free will. Chuprov (1959, pp.
222-224) rightly perceives Nekrasov’s position as both philosophically and mathematically invalid.
However Chuprov’s mention of Nekrasov in a positive light (relating to the sufficiency of pairwise
independence) brought an irate postcard (dated 2 November 1910) from Markov when he had
“discovered” Chuprov’s book. This postcard, which initiated their correspondence reads:

“Inotice with astonishment that . . . P.A. Nekrasov, whose work in recent years represents
an abuse of mathematics, is mentioned next to Chebyshev.”

The enmity between Markov and Nekrasov had its genesis in another long and bitter controversy
between them (Seneta, 1984, §§6-7), initiated by a probabilistic paper of Nekrasov (1898), dedicated
to Chebyshev (!) and containing no proofs. In this and later publications on this topic, Nekrasov —
who was highly proficient in the use of complex variable theory in general and the Lagrange expansion
in particular—attempted to use the method of saddlepoints, of Laplacian peaks and the Lagrange
inversion formula to establish, for sums of non-identically distributed lattice random variables, what
are now standard local and global limit theorems of Central Limit type for large deviations. The
attempt was very many years ahead of its time, but was only partly successful and poorly presented.
Its specific inaccuracies were criticised by Markov and Liapunov who never understood the general
direction (nor was it noticed by their successors). Indeed, since Nekrasov, subsequent to 1898, wrote
about 1000 pages on the topic, spread serially over volumes 21-23 of Matematicheskii Sbornik under
the grandiose title “New Foundation of the Study of Probabilistic Sums and Mean Values”, the task
of penetrating the work was formidable.

It was, however, Nekrasov’s (1902) attempt to use mathematics and statistics in support of “free
will” that led Markov to construct a scheme of dependent random variables { X, } in his 1906 paper on
the basis of which Nekrasov’s claim for necessity of independence for the WLLN was convincingly
refuted. The background to this therefore deserves some attention.

3 The Moscow Mathematical School

A basic Judeo-Christian doctrine is that every person is responsible for his/her actions. That is,
every person has free will. In the times of which we speak this doctrine was of fundamental interest
to certain mathematicians, who were firm adherents of the Russian Orthodox faith which permeated

every aspect of life in the pre-revolutionary Russian Empire. We quote here Chuprov (1959, pp.
222-223)

“Attempts to enlist statistics as a foundation of the theory of will have not abated,
even so ... . Of considerable interest in this connection is the reasoning of a group
of Russian academics inclined to call itself the ‘Moscow School’. In recent years their
views have received publicity well beyond the limits of Russia thanks to the German-
language articles of V.G. Alekseev, which exposit them in readily comprehensible form.
The ‘Moscow School’ decidedly insists that free will is the conditio sine qua non of
statistical laws governing everyday life.”

These mathematicians were involved in leading roles within the Moscow Mathematical Society
which published the Matematicheskii Sbornik. The most eminent of them was N.V. Bugaiev, who
focussed on the study of discontinuous functions, since he perceived discontinuity as according with
free will. Others were V.Ia. Zinger (or Tsinger) and P.A. Nekrasov. An account of the “idealist”
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activities of this group, and the fate after the revolution of their “offspring” Egorov and Luzin, is
given in English by Ford (1991).

Needless to say, while there was clearly tension between the St. Petersburg School and the Moscow
School in pre-revolutionary times, it took considerable time for the mathematical achievements of the
Moscow School to come out of the severe decline engendered by its “idealist” philosophy. Eventually,
one of the leaders of the “Initiative Group for the Reorganization of the Mathematical Society” in
1930 (see Ford, 1991), L.A. Lyusternik, in his memoirs (Lyusternik, 1967, §3) exonerates all the
founders of the Moscow Mathematical Society of reactionary character, laying the blame squarely
for the damage to their reputations on

“... the pseudo-scientific articles of the MU [Moscow University] professor Nekrasov
... in which he tried to substantiate the indispensability of the regime prevailing at the
time.”

Lyusternik goes on to recollect that in:

“... the first half of the 1920’s Nekrasov still attended the meetings of the MMO
[Moscow Mathematical Society] and sometimes even presented papers. A queer shadow
of the past, he seemed decrepit—physically and mentally—and it was difficult to un-
derstand him . .. This pitiful old man was like a shabby owl.”

A substantially different view of P.A. Nekrasov is given in an obituary by his student S.P. Sluginov
(1927, translated in Seneta, 1984) written at a time of detente and reconstruction in Russia before
the onset of Stalinism.

It is not surprising that one of the brightest student members of the Moscow Mathematical School,
Pavel Aleksandrovich Florensky, a friend of Luzin, became a Russian Orthodox priest (Ford, 1991).
He acquired great eminence as a scientist and theologian, but the manner and date of his death were
unknown or misreported (as 1943) until recently. In fact, Florensky was executed by shooting on
December 8, 1937 (Khoruzhy, 1990, p. IX). He was born January 21 (new style), 1882.

4 Markov in Biography

Just as the personality of Nekrasov inflamed their various controversies, so did that of Markov,
who, in contrast however, is often painted in glowing colours. This is deservedly so in respect of his
mathematics, but is also due to the fact that his character and beliefs were very acceptable to the
incoming political system following the October revolution. This made it politically acceptable, and
indeed desirable, to put the St. Petersburg School into exclusive eminence in Soviet mathematical
historiography. We recall from the brief biography by his son in Markov (1951) the protests of
Markov in 1902 over the reversal by the Tsar of the election as Honorary Member of the Russian
Academy of A.M. Gorky (Peshkov), the subsequent refusal to accept any awards (“orders”) from the
Academy, or to act as “agent of the government” in relation to students at St. Petersburg University.
In 1912 when the Synod of the Russian Orthodox Church excommunicated Leo Tolstoy, Markov
likewise requested excommunication.

On the other hand, Grodzensky’s (1987) more recent biography, while it tries continuously to justify
Markov’s maverick behaviour in terms of a high-minded, uncompromising, liberal and emotional
nature, shows nevertheless that Markov was also ready to dash off an aggrieved and strongly-worded
letter in causes not as just as described above. In 1891 he implicitly accused his mentor Chebyshev
of plagiarism (pp. 62-63). He had an extremely negative attitude to the person and work of Sofia
Kovalevskaya (Sonia Kowalewski), initially his competitor for Academy membership (pp. 66-77),
and this did not abate even after her death and had connections with Nekrasov.

There is another rather pathetic but illuminating connection with Gorky in the last year of Markov’s:
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life in the aftermath of the revolution (Grodzensky, p. 136):

“On the 5th of March 1921 A.A. Markov communicated that on account of the absence
of footwear he is not able to attend meetings of the Academy. A few weeks later the
KUBU [Committee for Improvement of the Existence of Scientists], meeting under the
chairmanship of M. Gorky, fulfilled this prosaic request of the famous mathematician.
Time, however, provided a colourful sequel, of sorts, to this. At the meeting of the
physico-mathematical section of the Academy of Science on the 25th May, Andrei
Andreevich announced: Finally, I received footwear; not only, however, is it stupidly
stitched together, it does not in essence accord with my measurements. Thus, as before,
I cannot attend meetings of the Academy. I propose placing the footwear received by
me in the Ethnographic Museum as an example of the material culture of the current
time, to which end I am ready to sacrifice it.”

5 Techniques of Markov’s 1906 Paper

The very first paper on chain dependence of Markov (1906), contains incisive ideas for the future
development of the theory, and is the basis of several of the early correspondence exchanges. N.
Sapogov’s commentary on this paper in Markov (1951, pp. 626628, 660—662) does not, however,
fully explore these.

The thrust of §§2 and 5 of Markov (1906) is to obtain a WLLN for a general scheme of dependent
variables {X,}, n > 1. The scheme he constructs is in fact a finite Markov chain, which Markov
takes to be time-homogeneous with all transition probabilities p;; strictly positive. He shows that
E(X,4x|Xn =1),i€S, and E(X,+x) all have the same limit as k — 00; denote this limit by a. Using
the same technique he is able to show that

E((Z(Xi - EX,~))2) <Gn (5.1)
i=1

for a positive number G. Then since

E [(i(xi —EXy))’ - (i(xi —a>)2] - [i(EX.» —a)l

he deduces that Pr{|X, —a| > ¢} - Oasn — 00,
from the Bienaymé—Chebyshev Inequality, since [ZLl(E X — a)}2 /n? — 0 (because EX; —
aasi — 00).

This achieves the WLLN construction, but let us focus, rather, on the technique. An examination
of Markov’s mathematics (Markov, 1951, pp. 358-359) shows that central to his argument is the
derivation of a recurrence inequality A®*D < HA®, where 0 < H < 1 (and we have substituted
k for his i — 1). The derivation actually gives the following general result (c.f. Seneta, 1981,
Theorem 3.1): Let w = {w;} be an arbitrary vector and P = {p;;}, i, jeS a stochastic matrix. If
z = Pw, z = {z,}, then for any two indices h, h’:

1 .
Zh_Zh'5§Z|Phj_Ph’j| {ml'glij—mjmwj}
j

whence (tantamount to the inequality obtained by Markov):

max |z, — zp| < H max |w; — wj,|. (5.2)
h.ht NG
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where )
H=3 max Y _ |pis — pjs- (5.3a)
bl ses
From the equivalent form
H =1 — min min(p;s, Pis 5.3b
ni Zs (Piss Pis) (5.3b)

itisclearthat0 < H < 1.
The contractivity property (5.2) of a stochastic matrix P acting on w to form z is a tighter form of
the inequalities

min w; <min z;, max w; > max g; 54)
! ¢ ! ]

which follow obviously from z; = ) j Pijwj, €S, and are also implicit in Markov’s reasoning.
Markov works with the specific choices w; = E(X,4x| X, = i), so that

zi = 2 P(Xn=jlXn-1 = DEXpsk|Xn = j) = E(Xps| Xn—1 = i)
= EXp-1+k+1|Xn-1 =10).

From (5.4) and time-homogeneity, min; E(X,4«| X, = i) isnon-decreasing withk, max; E(X, x| X, =
i) is non-increasing, E X, 4 is sandwiched between, and from (5.2)

AWHD = max E(Xp k41 1Xn = i) = min E(Xpyies1| Xp = ) < KH*
where
K = max E(X;|Xo = i) — min E(X;|Xo = i).
I3 {

It is clear from (5.3b) that if the elements of P are all positive, then H < 1, yielding the limiting
results for expectations required.
Equally striking is the justification for (5.1), which Markov says follows from

k—1
E((X, - EXk)(Z(Xi - EX,»))) <D(H+H*+.-.-+ H*Y (5.5)
i=1

for a positive constant D. He justifies (5.5) and (5.1) thus:

[ ”

. arguing entirely as in §2, we easily obtain the inequalities . . .

Now, §2 is concerned with the case of a Markov chain on the state space S = {0, 1} with (2 x 2)
transition matrix

0 1

0 qll p/I

P - 1 [ql pl
corresponding to dependent trials (state O = failure, state 1 = success), in the stationary regime of the
chain. This is a rather specific situation in which H = |p’ — p”|. In §2, Markov certainly is close
to (5.5), but actually argues from an exact expression for the left-hand side as a sum of powers of

p'—p”,accordingas p’ < p” or p’ > p”, in asituation where strict stationarity of the homogeneous
chain is being assumed, whence neither Var X, nor Cov(X,, X,+«) depend on n. In §5, on the other
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hand, Markov takes care not to assume stationarity of the homogeneous chains {X,}. Note that, in
fact, modulus signs are required on the left of (5.5).

He returns to the themes of his §2 repeatedly in subsequent work, but as far as we have been able to
determine, the use of H as a tool in a general setting seems not to reappear. Markov’s foci of WLLN
and CLT for Markov chains (especially the inhomogeneous case) were taken up by S.N. Bernstein,
beginning with a notable study, as one of his very earliest, in 1918 of the case of dependent trials
(see Bernstein, 1964, pp. 61-65). Bernstein used in place of H for general inhomogeneous chains,
a simpler tool; we take this up in the next section, when we discuss briefly the validity of (5.5) and
(5.1) in a general setting.

On the other hand, the contraction effect (5.2) of H underlies various proofs of ergodicity (in
which Markov seems to have been interested only in passing, as expressed above), in cases (such as
that of a strictly positive P) where H < 1. Thus consider the matrix of k-step transition probabilities
P* = { pﬁ.l_?} for a homogeneous chain, and take in (5.2) w; = pﬁ?; then z; = p?"“) so that

is

(k+1) k+

(
max |y = Pus

1 k) k
= Hr?a]!xlpﬁ-s - P

Thus, using (5.4), we see that as k — 00, pg.';) approaches a limit independent of j. For reasons such
as this, H can be thought of as an ergodicity coefficient, and is denoted 7;(P) in Seneta (1981). We
need to use this alternative notation for the next section.

6 The Ergodicity Coefficient

In his commentary Sapogov notes (Markov, 1951, pp. 662) that for 7, (P)(= H) < 1itis sufficient
that P have just one column of strictly positive entries. Indeed from (5.3b), if max; min; p;; > A >
0, then 11 (P) < 1—A < 1. Such stochastic matrices, sometimes called Markov matrices, became the
basis of Bernstein’s studies of homogeneous Markov chains, where P,1, n > 0, denotes the matrix
of transition probabilities Pr{X,+1 = j|X, = i}, i, jeS (assume constant finite state space S). Of
particular interest here is a WLLN for such chains of Bernstein in 1946, following on the work of
Markov (1910). This paper of Markov deals with the case where § = {0, 1}, where the entries in the
P,’s are each uniformly bounded from 0 and 1, again by methods specific to that case and similar to
Markov'(1906, §2). Bernstein’s treatment (see Bernstein, 1964, pp. 455-460) of the WLLN for the
general case repeats some of the logical steps of Markov (1906, §5) leading to an expression of form
(5.2), and then invokes the assumption that all the transition matrices are uniformly Markov (that is,
the same A > 0 may be used for each P,) to obtain in essence (5.5) and (5.1) with (1 — A) in place
of H.

The derivation in the setting of inhomogeneous chains and in terms of 71 (P,)’s, assuming 7; (P,) <
B < 1 (where B is independent of ), in the manner of (5.5) and (5.1) is, finally, contained in Hartfiel
& Seneta (1994, Section 4). This derivation is heavily dependent on the fact that

7 (P) = sup{é”, 67|l =1,6T1=0: |67 P|);) (6.1)

which is apparently due to Dobrushin in 1956.

The equivalence of the forms (5.3a) and (6.1) is a non-trivial exercise, and it is not clear to the
author how (even in the general homogeneous case) Markov could have derived (5.5), especially in
the absence of stationarity. The apparent disappearance of H in the general case from his writings
after its only appearance in a “provincial journal” (Ondar, 1981, Letter No. 4), and the fact that
Bernstein does not incorporate it into his proof, suggest an inspired guess on Markov’s part, by
analogy with the stationary dependent trials case.

Dobrushin’s (1956) use of the ergodicity coefficient ; was in the classical setting of the CLT for
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non-homogeneous Markov chains. Its use in connection with problems of ergodicity was popularized
at about the same time by Hajnal & Sarymsakov (see Iosifescu, 1980; Seneta, 1981).

A stochastic matrix P with the crucial property t;(P) < 1 is called “scrambling”. From (5.3b)
we see that a stochastic matrix is scrambling iff any two rows have at least one position in which
positive entries occur. This is a richer and more convenient class to work with than positive or Markov
matrices. It is clear that 71 as a tool may be used also for stochastic matrices with a countable infinite
index set S.

For completeness as regards the WLLN, we remark that the uniformly scrambling condition
11(P,) < B < 1,n > 1, above, may be replaced by the condition n{1 — 7;(P,)} - oc ann — o0,
adapted from the 1918 analysis of the two-state case by Bernstein (1964, pp. 61-65). For that setting,
Bernstein shows that this condition is close to necessary for the WLLN.

To bring the role of H = 1;(P) in ergodicity glancingly right up to the present, we first note the
inequality:

|7d PX — =T < |7l — =T | 2f(P) 6.2)

if P is the transition matrix of a finite Markov chain whose states contain a single closed aperiodic
class, w7 is the unique limiting-stationary distribution vector, and ] is any (initial) distribution
vector. The inequality (6.2) may be obtained in a few steps from (6.1) (see e.g. the proof of Theorem
2.1 in Seneta, 1993; and Tan, 1983). Thus (6.2) actually measures the variation distance between
#d P* and its limit w7 in terms of the initial variation distance between 7] = {7} and =7 = {m;},
and of the maximal variation distance between the rows of P as measured by t; (P). If P is scrambling
(6.2) provides an explicitly calculable geometric convergence rate 7;(P), and thus provides an
ultimate form (albeit implicit) to Markov’s ergodicity approach for finite homogeneous chains.

For the subcase of finite irreducible aperiodic P (so 7; > 0, each i&S) Fill (1991, Theorem 2.7)
gives the bound, obtained in rather more involved fashion:

1/2
Il P¥ — =T < [Z(n? - n,«)Z/n,-] (8,2 (M) (6.3)

where B1(M) is the second-largest eigenvalue of the “reversibilized” matrix M = PP where
P = {(p; ;Y and p;j = m;pji/m;. We note with Fill that 8; (M), being an eigenvalue, is not in general
explicitly available, and bounds for it (involving, for example, the Poincaré constant or Cheeger
constant) must be employed, thus weakening (6.3).

There appears to be little to choose in fact even between (6.2) and (6.3) as it stands for irreducible
aperiodic P, since matrices P may be found giving 7, (P) < ﬂll/ 2 (M) < 1. An example (taken from
Tan, 1983) of such a P, with associated quantities 77, 7;(P) and B;(M) is

/2 12 0 0 xT = (5/13, 5/13, 3/26, 3/26)
5/16 5/16 3/16 3/16 _ i _
5/16 5/16 3/16 3/16 Elgenvalues of P, P, and M = PP

5/16 5/16 3/16 3/16]|  are:1,3/16,0, 0.

P =

Thus B,*(M) = /3716 = 0.4330, 1,(P) = 3/8 = 0.375.

It may not be inappropriate, therefore to call the constant H = 1,(P), the Markov—Dobrushin
constant because of its remarkable and pervasive properties. It is remarkable that this constant is
already central in Markov’s first paper on chain dependence theory.
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Résumé

L’oeuvre de Markov sur la dépendance en chaine eut pour motivation son désir de réfuter I’affirmation de Nekrasov que
I’indépendance en paires de variables aléatoires dans une somme était une condition nécessaire de la Loi Faible des Grands
Nombres. Markov acheva son résultat en obtenant une telle Loi en 1906 pour un systéme de variables aléatoires dépendantes,
et en particulier pour des chaines de Markov finies homogénes. L’affirmation incorrecte de Nekrasov était basée sur la doctrine
théologique de libre arbitre, que certains membres de I’Ecole de Mathématiques de Moscou entretenaient i cette époque.

La premiére partie de I’article présente I’arri¢re-plan de la situation. La deuxiéme traite des techniques plutot négligées
de I’article de Markov en 1906, et surtout de son emploi de ce qu’on a par la suite nommé le coefficient d’ergodicité. Ce
coefficient exprime I’effet contractoire que I’application d’une matrice stochastique a sur un vecteur colonne; il est 2 la base
de ses arguments d’ergodicité et de sa preuve de la Loi Faible des Grands Nombres.
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